首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   3篇
林业   3篇
农学   10篇
  19篇
综合类   7篇
农作物   21篇
畜牧兽医   17篇
植物保护   2篇
  2023年   4篇
  2020年   6篇
  2019年   2篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1997年   2篇
  1994年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
71.
Brachiaria are tolerant to low phosphorus (P) soils and may enhance P soil availability. The identification of mechanisms driving this effect is important. Our objective was to determine responses of palisade grass and ruzigrass to mineral oxide-bound P. Palisade grass (Brachiaria brizantha) and ruzigrass (Brachiaria ruziziensis) were grown in nutrient solution (NS), where P was supplied as goethite and amorphous aluminum-oxide (Al-oxide). Only half of each pot received P. Dry matter yields of Brachiaria species having oxide-P as the sole P source were similar to those grown with water-soluble P. Inorganic P was found in the NS after 7 days, and organic P at 14 days after plant emergence. The presence of dissolved organic carbon (DOC) indicates an intense and quick response of the root system to the treatments. Results indicate enzyme and/or organic acids (OAs) root exudation as a strategy of these plants to access soil sparingly soluble P forms.  相似文献   
72.
Warm-season grasses are economically important for cattle production in tropical regions, and tools to aid in management and research of these forages would be highly beneficial. Crop simulation models synthesize numerous physiological processes and are important research tools for evaluating production of warm-season grasses. This research was conducted to adapt the perennial CROPGRO Forage model to simulate growth of the tropical species palisadegrass [Brachiaria brizantha (A. Rich.) Stapf. cv. Xaraes] and to describe model adaptation for this species. In order to develop the CROPGRO parameters for this species, we began with values and relationships reported in the literature. Some parameters and relationships were calibrated by comparison with observed growth, development, dry matter accumulation and partitioning during a 2-year experiment with Xaraes palisadegrass in Piracicaba, SP, Brazil. Starting with parameters for the bahiagrass (Paspalum notatum Flugge) perennial forage model, dormancy effects had to be minimized, and partitioning to storage tissue/root decreased, and partitioning to leaf and stem increased to provide for more leaf and stem growth and less root. Parameters affecting specific leaf area (SLA) and senescence of plant tissues were improved. After these changes were made to the model, biomass accumulation was better simulated, mean predicted herbage yield per cycle was 3573 kg ha−1, with a RMSE of 538 kg DM ha−1 (D-Stat = 0.838, simulated/observed ratio = 1.028). The results of the adaptation suggest that the CROPGRO model is an efficient tool to integrate physiological aspects of palisadegrass and can be used to simulate growth.  相似文献   
73.
In the low fertility acid soils of the Orinoquian savannas of Colombia, Urochloa humidicola cv. Tully or Humidicola is one of the most widely planted tropical forage grasses for improving livestock productivity. Low nutritional quality of this grass limits sustainable livestock production in this region. In this study, we conducted a phenotypic evaluation under field and greenhouse conditions of one of the first hybrid populations of U. humidicola generated from the forage breeding program of CIAT. Our objective was to identify a set of new hybrids of U. humidicola that combine improved productivity and nutritional quality plus the biological nitrification inhibition (BNI) trait/ability to reduce nitrogen (N) losses via leaching and nitrous oxide (N2O) emissions. To this end, we tested 118 hybrids (planted in pots) in the greenhouse for over 6 months and measured potential nitrification rates (NR) using soil microcosm incubation. NR values observed ranged from 0.27 to 5.75 mg N-NO3 kg soil−1 day−1. Later, 12 hybrids with different levels of NR were selected and field-tested in the Orinoquia region over a 4 years period (2013–2017) for dry matter production, nutrition quality (crude protein, in vitro digestibility and fibres content) and NR in each year. In the rainy season of 2018, two hybrids with superior agronomic performance and contrasting field level NR (Uh08/1149 and 0450) were subjected to analysis of soil-borne N2O emissions after fertilization during 13 days. The NR values recorded were not directly correlated with the forage quality parameters evaluated, however, the two grasses with the lowest NR values were among those with the highest biomass production, crude protein content, and N uptake. The grass hybrid Uh08/1149 and the germplasm accession CIAT 16888 were found as materials with superior forage value, with production of 14.1 and 14.6 tons dry matter ha−1 year−1 (up to 8% higher than the cv. Tully), crude protein of 11.5 and 9.1% per cut (up to 20% higher than the cv. Tully), and N uptake of 31.6 and 25.7 kg N ha−1 cut−1 (up to 30% higher than the cv. Tully). Additionally, these two grasses are likely to exhibit high-BNI ability, with potential to improve N use efficiency in managed pastures.  相似文献   
74.
Live fences have the potential to improve microclimatic conditions, moderate soil CO2 fluxes and function as carbon sinks. We quantified variation in soil CO2 fluxes from livestock silvopastoral systems under the canopies of live fences (LF), formed by Gliricidia sepium trees, or artificial fences (AF). We determined the responses of soil CO2 fluxes to environmental factors, including diurnal and seasonal variations in temperature and relative humidity in each fencing system. Measurements were made from April to June (dry season) and from July to September (rainy season), 2012. Fluxes were similar between the two livestock systems; LF emitted 1.00 μmol CO2/m2/s and AF 1.02 μmol CO2/m2/s. Soil temperatures at 5 cm depth were 3% warmer in AF than in LF, and relative humidity was 16% greater in LF than in AF. Seasonal variation in temperature greatly affected soil CO2 fluxes, which changed seasonally in parallel with temperature of the topsoil and relative humidity at 1 m height, peaking in late summer. Fluxes in LF and AF were greater in the rainy season (1.1 μmol CO2/m2/s, for both systems), when soil temperature was cooler and relative humidity was greatest, than during the dry season (0.9 μmol CO2/m2/s, for both systems). Soil fluxes were larger at night (00:00–06:00 h), when soil temperature was cooler and relative humidity greater, than during the morning (6:00–12:00 h), when soil temperature was warmer and relative humidity was less. The presence of G. sepium trees in LF did not influence soil CO2 fluxes.  相似文献   
75.
An in vitro experiment was performed to compare the forage quality of foliage of Calliandra (Calliandra calothyrsus Meissner var. Patulul) cultivated on either low or medium-fertility soils in Colombia and Kenya, respectively. A grass-alone diet, with and without urea supplementation, and five legume-supplemented diets (1/3 of dietary dry matter) were tested with the rumen simulation technique (Rusitec) (n = 4). The legume supplements consisted of Cratylia (Cratylia argentea), Calliandra from Colombia or Kenya, or 1:1 mixtures of Cratylia with Calliandra Colombia or Kenya. The tannin content of Calliandra Colombia was almost twice as high as that of Calliandra Kenya. Supplementation with urea or Cratylia alone, but not with Calliandra alone, increased ammonia concentration in the fermenter fluid. Unlike Calliandra Colombia, Calliandra Kenya in mixture with Cratylia increased ammonia concentration. The apparent degradation of organic matter increased with all types of supplementation, except with Calliandra Colombia alone. Although the foliage of Calliandra from the two cultivation sites had similar contents of organic matter, crude protein and neutral detergent fibre, they differed in␣nearly all fermentation properties. The material from Kenya showed a higher apparent nutrient degradability. These results indicate that C. calothyrsus var. Patulul cultivated at the Kenyan site had a clearly higher forage quality than foliage from the same variety cultivated in Colombia. However, both materials had a much lower forage quality than Cratylia. The Cratylia-related effects on ruminal fermentation were mainly the results of an increased supply of fermentable nitrogenous compounds as was obvious from the comparison with the urea-supplemented grass.  相似文献   
76.
Brachiaria ruziziensis is a sexual diploid tropical grass species of wide adaptation and good forage quality. Pachytene chromosomes were studied in morphological detail and all nine chromosomes were identified by their length, centromere position, and size and distribution of chromomeres. The idiogram prepared for the first time in this species consists of four median and five submedian chromosomes.  相似文献   
77.
C Marín  J Weiner 《Weed Research》2014,54(5):467-474
We tested the hypothesis that improved weed suppression by maize can be achieved through increased crop density and spatial uniformity. Field experiments on three varieties of maize sown at three densities (5, 7 and 10.5 seeds m?2) and in two spatial patterns (grid pattern and rows) under very high weed pressure from Brachiaria brizantha were performed in 2012 and 2013. We measured weed biomass 1 month after sowing and at harvest, and grain yield at harvest. Density, variety and sowing pattern all had strong and significant effects on both weed biomass and yield. On average, weed biomass was reduced (by 72% in the first year and 58% in the second year), and grain yield was increased (by 48% and 44%) at the highest density in the grid pattern compared with standard sowing practices (medium density, row pattern). There was a significant density × variety interaction, which is evidence for genetic differences in the response of the varieties to density in characteristics that influence weed suppression. The variety that suppressed weeds best at high density had the lowest variation in the angle of insertion of the oldest living leaf at harvest (leaf 6), supporting the hypothesis that reduced phenotypic plasticity may be advantageous for weed suppression under high density and spatial uniformity. Increased density and uniformity can contribute to weed management in maize in many cases, potentially reducing the need for herbicides or mechanical weed control.  相似文献   
78.
Summary We studied the effects of limining on growth and nutrient concentrations of Brachiaria decumbens inoculated with five vesicular-arbuscular mycorrhizal (VAM) fungal assemblages which orginated from soils with different acidity. Liming increased plant growth when applied at rates up to 3 g kg-1 soil and depressed growth at higher rates. Mycorrhizal plants grew better than non-mycorrhizal ones in unlimed soil and also liming rates of 4.5 and 6.0 g kg-1 soil. The growth amelioration effects of VAM in highly acid or over-limed soils were related to nutrient uptake. VAM fungi isolated from an acidic soil exhibited a high symbiotic effectiveness and were better adapted to unlimed soil than those that originated from non-acidic soils. VAM root colonization, 90 days after planting, was little affected by liming. Fungal spore production and species compositions were highly affected by liming. A mixture of Glomus diaphanum and Glomus occultum predominated in unlimed soils inoculated with VAM assemblages isolated from non-acidic soils. In these fungal assemblages, an increased liming rate favored Glomus etunicatum over the other VAM fungi. Gigaspora margarita sporulated abundantly when introduced into unlimed soils, but rarely in limed soils. VAM appear to be crucial for the establishment of brachiaria pastures in the nutrient-deficient acidic soils of Central Brazil. It is suggested that liming may cause striking shifts in VAM populations which may, in turn, have a long-term impact on agricultural productivity in the tropics.  相似文献   
79.
氮肥对热研6号珊状臂形草生长的影响   总被引:2,自引:0,他引:2  
通过盆栽单因子试验,结果表明:氮肥对热研6号珊状臂形草分蘖枝、茎长和干物率均有显著影响。N3(尿素用量为0.9g/盆)和N4处理(尿素用量为1.2g/盆)的分蘖枝增加最快为0.46枝/盆·d,N3处理的茎伸长生长速率最快为0.82cm/d,N2处理(尿素用量为0.6g/盆)的干物率最高为41.85%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号