首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  国内免费   2篇
林业   9篇
  20篇
畜牧兽医   6篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   5篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有35条查询结果,搜索用时 38 毫秒
11.
Root-pruning is generally recommended as an appropriate treatment to reduce competition for soil water and/or nutrients and suppression of crop yield in areas adjacent to windbreaks. Several recent studies suggest, however, that factors other than soil water might be causing yield reduction at the interface. For two consecutive years, we evaluated root-pruning effects on soil water at the windbreak/crop interface under both cropped (soybean [Glycine max (L) Merr.] variety Iroquois, 1997) and non-cropped (1998) conditions in Mead, Nebraska, USA. Volumetric soil water content near the windbreaks was systematically measured at various soil depths, distances from the windbreak, and windbreak exposures using Time Domain Reflectometry (TDR). Overall differences in soil water content between root-pruned and non-pruned plots in soybean were smaller in magnitude at all distances in both the west (windbreak on the east side) and the east (windbreak on the west side) exposures in 1997, compared with the non-cropped condition in the south exposure in 1998. With a soybean crop in 1997, volumetric soil water content in the east exposure averaged 2.3% greater in the top 30 cm of the soil profile at a distance of 0.75H (H = windbreak height) into the field from the windbreak when compared to the non-pruned treatment. In the west exposure, however, the differences were undetectable at corresponding distance and depth. The increase in soybean yield in root-pruned plots corresponded well with the observed differences in soil water content at various distances, especially in the east exposure. Under a non-cropped condition in 1998, soil water content in the root-pruned plots was significantly greater than the non-pruned plots in the top 45-cm profile, averaging 3.3% at 0.75H and 2.2% at 1.0H. Beyond 1.0H, the increase was not significant. These results agree with the previously reported range of crop yield suppression near windbreaks, indicating that soil water competition between the crop and windbreak is highly related to, and probably plays a leading role in yield suppression within the competition zone.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
12.
The assessment of a forest resource in national inventories provides a firm basis for the calculation of biomass and carbon (C) stocks of forests. Biomass expansion factors (BEFs) and conversion factors provide a robust and simple method of converting from forest tree stem volume to total forest biomass. These factors should be constructed on the basis of nationally specific data in order to take account of regional differences in growth rates, management practices, etc. The objective of this study is to improve the accuracy of biomass estimation by calculating a range of age-dependant BEFs from representative data that more accurately describe the allometry of present forests. The results from this study show that the allocation of biomass to compartments in forest stands and throughout a rotation varies considerably, and that the use of BEFs for the calculation of C stocks in forests of sub-timber dimensions is highly impractical.
Brian TobinEmail:
  相似文献   
13.
Based on the enclosed chamber method, soil respiration measurements of Leymus chinensis populations with four planting densities (30, 60, 90 and 120 plants/0.25 m2) and blank control were made from July 31 to November 24, 2003. In terms of soil respiration rates of L. chinensis populations with four planting densities and their corresponding root biomass, linear regressive equations between soil respiration rates and dry root weights were obtained at different observation times. Thus, soil respiration rates attributed to soil microbial activity could be estimated by extrapolating the regressive equations to zero root biomass. The soil microbial respiration rates of L. chinensis populations during the growing season ranged from 52.08 to 256.35 mg CO2 m−2 h−1. Soil microbial respiration rates in blank control plots were also observed directly, ranging from 65.00 to 267.40 mg CO2 m−2 h−1. The difference of soil microbial respiration rates between the inferred and the observed methods ranged from −26.09 to 9.35 mg CO2 m−2 h−1. Some assumptions associated with these two approaches were not completely valid, which might result in this discrepancy. However, these two methods' application could provide new insights into separating root respiration from soil microbial respiration. The root respiration rates of L. chinensis populations with four planting densities could be estimated based on measured soil respiration rates, soil microbial respiration rates and corresponding mean dry root weight, and the highest values appeared at the early stage, then dropped off rapidly and tended to be constant after September 10. The mean proportions of soil respiration rates of L. chinensis populations attributable to the inferred and the observed root respiration rates were 36.8% (ranging from 9.7 to 52.9%) and 30.0% (ranging from 5.8 to 41.2%), respectively. Although root respiration rates of L. chinensis populations declined rapidly, the proportion of root respiration to soil respiration still increased gradually with the increase of root biomass.  相似文献   
14.
In terrestrial systems there is a close relationship between litter quality and the activity and abundance of decomposers. Therefore, the potential exists for aboveground, herbivore-induced changes in foliar chemistry to affect soil decomposer fauna. These herbivore-induced changes in chemistry may persist across growing seasons. While the impacts of such slow-cycle, ‘legacy’ effects of foliar herbivory have some support aboveground, such impacts have not been evaluated for soil invertebrates. Here, we investigate legacy effects on Collembola population structure and nitrogen acquisition. We collected foliar material (greenfall) from trees that had, in the preceding season, been exposed to insect herbivory by leaf-chewing Lepidoptera. Collembola populations were grown with the greenfall in soil microcosms across 16 weeks. While there were only modest effects of herbivory on the greenfall mass loss, Collembola abundance and biomass after 8 weeks of greenfall exposure were approximately 2.5-fold greater in the controls. Given that Collembola biomass percentage nitrogen was relatively fixed, this translated to approximately 2.5-fold greater biomass nitrogen. The herbivore treatment decreased the absolute amount of Collembola biomass nitrogen derived from both greenfall and soil, and the relative contribution of litter nitrogen and soil nitrogen to Collembola biomass nitrogen was dependent on both the herbivory treatment and greenfall initial nitrogen. Our results show that slow-cycle, legacy effects of foliar herbivory may affect soil faunal population structure and nitrogen acquisition, demonstrating the potential for aboveground herbivory to influence belowground animal ecology and nitrogen cycling across multi-annual timescales.  相似文献   
15.
Interspecies competition and N transfer in a tropical grass-legume mixture   总被引:4,自引:0,他引:4  
Competitiveness of Brachiaria decumbens cv. Basilisk and Stylosanthes guianensis cv. Minerão was investigated either without root restriction or by separating their root systems with a fine mesh or a solid barrier in the presence or absence of mycorrhiza (Glomus clarum). Nitrogen transfer between the legume and the grass was assessed with the 15N isotope dilution technique using a relatively stable 15N-enriched soil derived from a long-term labelling experiment. During establishment, legume development was severely restricted by competition from the grass in pots without a root barrier. However, as the system became N limited, the legume became dominant due to its access to atmospheric N2 which contributed over 80% of the legume N requirements. S. guianensis was highly mycotrophic and inoculation with mycorrhiza favoured rapid establishment even in the treatments with no root barrier. Only in the presence of root barriers, either a mesh or a complete compartment separation, was the proportion of N derived from N2 fixation positively affected by the presence of the fungus. No significant direct belowground N transfer from legume to grass was observed during the lifetime of the legume suggesting that the legume maintains a highly efficient recycling under N-limited conditions. However, after cutting the shoot at ground level, the grass assimilated significant amounts of N derived from decaying legume roots. We conclude that the main pathway of belowground N transfer from S. guianensis to associated B. decumbens occurred via decomposing roots rather than via root exudates or direct mycorrhizal hyphae transfer.  相似文献   
16.
Highlights and perspectives of soil biology and ecology research in China   总被引:1,自引:0,他引:1  
As seen for the publications in several distinguished soil related journals, soil biology and ecology is booming in China in recent years. This review highlights the major findings of the soil biology and ecology projects conducted in China during the past two decades. Special attention is paid on the responses of soil biota to environmental change, and the roles of soil functional groups in C transformation, nutrient cycling and pollution remediation. We also point out the future challenges facing the Chinese soil biologists and soil ecologists. In the future, more systematic studies rather than scattered case studies are needed, more controlled field experiments rather than short-term laboratory studies should be encouraged. Besides, we need to focus more on the linkage between aboveground and belowground organisms, the interactions between different groups of soil food web, and the coupling of observation with modeling. It is essential to employ the state-of-the-art technology in research of soil biology and ecology because to answer the emerging scientific questions relies heavily on the development of new technology. Our ultimate goals are to push forward the research on soil biology and ecology in China and to encourage the interaction and collaboration between the international community and research groups in China.  相似文献   
17.
王占义  金净  王成杰  侯佳  徐文艺 《土壤》2017,49(2):414-416
介绍了一种测定荒漠草原植物根系生物量的装置与用法,并将其在实际中加以应用。实践证明,本方法可有效测定荒漠草原植物根系生物量及地下净初级生产力,比较适用于植被覆盖度较低的荒漠草原地区。  相似文献   
18.
Impacts of belowground insecticide application on plant performance and changes in plant community structure almost uniformly have been ascribed to reduced belowground herbivory, although recent studies reported distinct side effects on detritivore soil animals, particularly on Collembola. Consequently, it remains controversial if the resulting soil feedbacks on plants are due to alterations in arthropod herbivory or to changes in the activity of detritivores. We investigated the impacts of the application of a commonly used belowground insecticide (chlorpyrifos) on soil animals and soil feedbacks on model plant species representing two main plant functional groups of grassland communities, the grass Lolium perenne and the forb Centaurea jacea.Insecticide application decreased soil insect herbivore densities considerably. However, also Collembola densities and diversity decreased markedly due to insecticide application and this was most pronounced in Entomobryidae, Isotomidae, Hypogastruridae, and Sminthuridae. While densities of other detritivore taxa were not affected or even increased (Oribatida) in insecticide subplots, that of predators mostly decreased.Both model plant species built considerably more biomass in control subplots than in insecticide subplots irrespective of characteristics of the resident plant community. This suggests that soil feedbacks on plants were not due to belowground herbivory and highlights the significance of alternative mechanisms responsible for insecticide-mediated soil feedbacks on plants. The deterioration of model plant species’ performances in insecticide subplots most likely was due to decreased densities of Collembola resulting in the deceleration of nutrient cycling and plant nutrition. The results suggest that it is oversimplistic to only ascribe insecticide-mediated soil feedbacks on plants to belowground herbivores. The results further indicate that in the present study the impact of arthropod detritivores on plant productivity was more important than that of belowground herbivores. This emphasizes that plant-soil arthropod interactions in grassland might be based on both facilitative and antagonistic interrelationships.  相似文献   
19.
The temperature dependence of soil respiration (RS) is widely used as a key characteristic of soils or organic matter fractions within soils, and in the context of global climatic change is often applied to infer likely responses of RS to warmer future conditions. However, the way in which these temperature dependencies are calculated, interpreted and implemented in ecosystem models requires careful consideration of possible artefacts and assumptions. We argue that more conceptual clarity in the reported relationships is needed to obtain meaningful meta-analyses and better constrained parameters informing ecosystem models. Our critical assessment of common methodologies shows that it is impossible to measure actual temperature response of RS, and that a range of confounding effects creates the observed apparent temperature relations reported in the literature. Thus, any measureable temperature response function will likely fail to predict effects of climate change on Rs. For improving our understanding of RS in changing environments we need a better integration of the relationships between substrate supply and the soil biota, and of their long-term responses to changes in abiotic soil conditions. This is best achieved by experiments combining isotopic techniques and ecosystem manipulations, which allow a disentangling of abiotic and biotic factors underlying the temperature response of soil CO2 efflux.  相似文献   
20.
Understanding the relationship between soil biodiversity and ecosystem functioning is critical to predicting and monitoring the effects of ecosystem changes on important soil processes. However, most of Earth's soils are too biologically diverse to identify each species present and determine their functional role in food webs. The soil ecosystems of Victoria Land (VL) Antarctica are functionally and biotically simple, and serve as in situ models for determining the relationship between biodiversity and ecosystem processes. For a few VL taxa (microarthropods, nematodes, algae, mosses and lichens), species diversity has been intensively assessed in highly localized habitats, but little is known of how community assemblages vary across broader spatial scales, or across latitudinal and environmental gradients. The composition of tardigrade, rotifer, protist, fungal and prokaryote communities is emerging. The latter groups are the least studied, but potentially the most diverse. Endemism is highest for microarthropods and nematodes, less so for tardigrades and rotifers, and apparently low for mosses, lichens, protists, fungi and prokaryotes. Much of what is known about VL diversity and distribution occurs in an evolutionary and ecological vacuum; links between taxa and functional role in ecosystems are poorly known and future studies must utilize phylogenetic information to infer patterns of community assembly, speciation, extinction, population processes and biogeography. However, a comprehensive compilation of all the species that participate in soil ecosystem processes, and their distribution across regional and landscape scales is immediately achievable in VL with the resources, tools, and expertise currently available. We suggest that the soil ecosystems of VL should play a major role in exploring the relationship between biodiversity and ecosystem functioning, and in monitoring the effects of environmental change on soil processes in real time and space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号