首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   503篇
  免费   19篇
  国内免费   31篇
林业   11篇
农学   17篇
基础科学   6篇
  173篇
综合类   157篇
农作物   15篇
水产渔业   46篇
畜牧兽医   102篇
园艺   16篇
植物保护   10篇
  2024年   2篇
  2023年   4篇
  2022年   6篇
  2021年   10篇
  2020年   8篇
  2019年   8篇
  2018年   8篇
  2017年   13篇
  2016年   19篇
  2015年   28篇
  2014年   26篇
  2013年   25篇
  2012年   17篇
  2011年   54篇
  2010年   44篇
  2009年   38篇
  2008年   31篇
  2007年   37篇
  2006年   32篇
  2005年   18篇
  2004年   12篇
  2003年   16篇
  2002年   12篇
  2001年   8篇
  2000年   8篇
  1999年   12篇
  1998年   12篇
  1997年   6篇
  1996年   9篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   7篇
  1991年   2篇
  1990年   1篇
  1989年   7篇
  1988年   1篇
  1987年   2篇
排序方式: 共有553条查询结果,搜索用时 15 毫秒
31.
农田过量施氮所引发的问题已经引起广泛关注,但长期施氮后土壤无机氮水平状况及其对秸秆降解的作用尚不清楚。本研究以中国科学院封丘农业生态实验站长期(2005~2018年)施氮肥(5个施氮水平:0(N0)、150(N1)、190(N2)、,230(N3)和270 (N4)kg ha-1 yr-1)的潮土为研究对象,开展短期(50天)的秸秆降解-土壤培育实验。培育期间监测秸秆碳的矿化、土壤无机氮(硝态氮和铵态氮)、可溶性有机碳、微生物生物量碳的动态变化,利用高通量测序测定细菌群落结构。结果表明,长期施氮后,土壤无机氮含量和秸秆碳的矿化率随施氮水平的升高而增加。不同长期施氮水平的土壤细菌群落结构呈现显著差异。网络分析揭示:秸秆降解过程中细菌群落内部物种间的共现模式随长期施氮水平发生改变,具体体现为长期高施氮水平下细菌群落彼此间的负相关得到了加强;同时,变形菌主导地位减弱、酸杆菌主导地位增强。综上,土壤无机氮含量、细菌群落结构及物种之间的关系随着长期施氮水平的不同发生了改变。本研究探究了长期不同施氮水平下土壤中无机氮的水平状况、秸秆降解状况以及秸秆降解过程中土壤细菌的生物特性,以期为秸秆还田和科学施氮提供一定的数据支撑和思路启示。  相似文献   
32.
[目的]研究橡胶草种植前后土壤微生物细菌的多样性。[方法]对大田种植橡胶草前后的土壤理化性质进行考察,并通过454测序技术对土壤微生物细菌多样的数据序列进行高级分析。[结果]橡胶草种植后土壤的全氮和全磷略高于种植前,有机质稍有下降。土壤细菌的OTU数在橡胶草种植前后相差不大。群落结构分析表明,橡胶草种植前后的细菌组成大致相同,但各物种所占比例有差异,大多数的细菌是不可培养的,其中与氮有关的菌属柱状区所占比例最大。PCA主成分分析表明橡胶草种植前后土壤微生物群落在细菌水平上相近,这个结果与群落分布柱状图相吻合。RDA分析表明,土壤pH值、有机质、土壤含水率、土壤全氮和全磷与细菌呈正相关,土壤容重与细菌呈负相关。[结论]试验测序数据表明,橡胶草种植前后的土壤微生物细菌在OUT水平上多样性丰富,在属的水平上群落结构组成相近,种植橡胶草后土壤理化性质发生了改变。  相似文献   
33.
Long-term diversity-disturbance responses of soil bacterial communities to copper were determined from field-soils (Spalding; South Australia) exposed to Cu in doses ranging from 0 through to 4012 mg Cu kg−1 soil. Nearly 6 years after application of Cu, the structure of the total bacterial community showed change over the Cu gradient (PCR-DGGE profiling). 16S rRNA clone libraries, generated from unexposed and exposed (1003 mg Cu added kg−1 soil) treatments, had significantly different taxa composition. In particular, Acidobacteria were abundant in unexposed soil but were nearly absent from the Cu-exposed sample (P<0.05), which was dominated by Firmicute bacteria (P<0.05). Analysis of community profiles of Acidobacteria, Bacillus, Pseudomonas and Sphingomonas showed significant changes in structural composition with increasing soil Cu. The diversity (Simpsons index) of the Acidobacteria community was more sensitive to increasing concentrations of CaCl-extractable soil Cu (CuExt) than other groups, with decline in diversity occurring at 0.13 CuExt mg kg−1 soil. In contrast, diversity in the Bacillus community increased until 10.4 CuExt mg kg−1 soil, showing that this group was 2 orders of magnitude more resistant to Cu than Acidobacteria. Sphingomonas was the most resistant to Cu; however, this group along with Pseudomonas represented only a small percentage of total soil bacteria. Changes in bacterial community structure, but not diversity, were concomitant with a decrease in catabolic function (BioLog). Reduction in function followed a dose-response pattern with CuExt levels (R2=0.86). The EC50 for functional loss was 0.21 CuExt mg kg−1 soil, which coincided with loss of Acidobacteria diversity. The microbial responses were confirmed as being due to Cu and not shifts in soil pH (from use of CuSO4) as parallel Zn-based field plots (ZnSO4) were dissimilar. Changes in the diversity of most bacterial groups with soil Cu followed a unimodal response - i.e. diversity initially increased with Cu addition until a critical value was reached, whereupon it sharply decreased. These responses are indicative of the intermediate-disturbance-hypothesis, a macroecological theory that has not been widely tested in environmental microbial ecosystems.  相似文献   
34.
Agricultural systems that receive high amounts of inorganic nitrogen (N) fertilizer in the form of either ammonium (NH4+), nitrate (NO3) or a combination thereof are expected to differ in soil N transformation rates and fates of NH4+ and NO3. Using 15N tracer techniques this study examines how crop plants and soil microbes vary in their ability to take up and compete for fertilizer N on a short time scale (hours to days). Single plants of barley (Hordeum vulgare L. cv. Morex) were grown on two agricultural soils in microcosms which received either NH4+, NO3 or NH4NO3. Within each fertilizer treatment traces of 15NH4+ and 15NO3 were added separately. During 8 days of fertilization the fate of fertilizer 15N into plants, microbial biomass and inorganic soil N pools as well as changes in gross N transformation rates were investigated. One week after fertilization 45-80% of initially applied 15N was recovered in crop plants compared to only 1-10% in soil microbes, proving that plants were the strongest competitors for fertilizer N. In terms of N uptake soil microbes out-competed plants only during the first 4 h of N application independent of soil and fertilizer N form. Within one day microbial N uptake declined substantially, probably due to carbon limitation. In both soils, plants and soil microbes took up more NO3 than NH4+ independent of initially applied N form. Surprisingly, no inhibitory effect of NH4+ on the uptake and assimilation of nitrate in both, plants and microbes, was observed, probably because fast nitrification rates led to a swift depletion of the ammonium pool. Compared to plant and microbial NH4+ uptake rates, gross nitrification rates were 3-75-fold higher, indicating that nitrifiers were the strongest competitors for NH4+ in both soils. The rapid conversion of NH4+ to NO3 and preferential use of NO3 by soil microbes suggest that in agricultural systems with high inorganic N fertilizer inputs the soil microbial community could adapt to high concentrations of NO3 and shift towards enhanced reliance on NO3 for their N supply.  相似文献   
35.
Soil salinity is a major factor relating microbial communities to environmental stress in the microbial selection process as stress can reduce bacterial diversity. In the San Joaquin Valley (SJV) of California, the problem of increasing salinity and consequently, decreasing crop productivity, due to reuse of saline drainage water are major concerns. An experiment was conducted in a closed, recirculating volumetric lysimeter system (VLS) consisting of 24 experimental plant growth units to determine the interactive effects of salinity, boron and pH on rhizosphere and non-rhizosphere microbial composition of cucumber (Cucumis sativus L. cv. Seminis Turbo hybrid). Plants in the VLS were irrigated from individual reservoirs containing a modified half-strength Hoagland's nutrient solution combined with salinity, boron (B), and pH treatments. The results indicated that salinity and pH were the most influential factors affecting the growth of plants and the effect of boron on the plant was more severe under slightly acidic conditions. Total bacterial DNA was extracted from rhizosphere and non-rhizosphere samples, and a 236-bp DNA fragment in the V3 region of the small subunit ribosomal RNA genes of eubacteria was amplified. The 16S rRNA and the products were subjected to denaturing gradient gel electrophoresis (DGGE) and sequencing. Analyses of bacterial diversity showed that the effects of salinity, boron, and pH were more severe on the rhizosphere bacterial population during the first week of growing cucumber, with decreasing impacts with plant growth. However, there was no salinity-B-pH interaction effects on plant biomass, but the effects were seen in the number of heterotrophic bacteria in the rhizosphere and on species richness and diversity during week seven of the study. These suggest that the effects of salinity-B-pH interactions may influence microorganisms first before plants and may pose long term effects on soil quality.  相似文献   
36.
Prions represent the active agent in transmissible spongiform encephalopathy (TSE) diseases and can remain infective to mammals even after prolonged periods in soil. The influence of mesofauna on prion dispersal and degradation in soil, however, remains unknown. In this study the effect of earthworms on the retention/dissemination of TSEs in soil was evaluated using a model recombinant prion protein (recPrP) and aqueous extracts from soil and fresh casts of two earthworm species, Lumbricus terrestris and Aporrectodea caliginosa. Our results showed that earthworm gut-derived enzymes did not enhance the degradation of recPrP in comparison to soil, even though non-prion related proteolytic activity was higher in fresh worm excrements than in soil samples. Complete degradation of recPrP occurred in the aqueous extracts from all samples within up to 6 days at +15 °C. The proteolytic enzymes responsible for degrading recPrP were inhibited by aprotinin and leupeptin and studies in pure cultures suggested these were most probably of soil microbial origin.  相似文献   
37.
应用两相分离技术研究红壤微生物组成的探讨   总被引:1,自引:0,他引:1  
采集了鄂南不同母质和利用现状的6个红壤样,用2%PEG+6%Dextran两相分离技术(Aqueous two-phase partitioning technique,简写为A2PP)纯化细菌,测定细菌生物量,研究两相分离技术在土壤微生物研究领域的可应用性。结果表明:(1)采用0.1%胆酸钠、钠型离子交换树脂、玻璃珠与土壤一起在4℃下振荡2h,能较好地分散土壤细菌。供试土样细菌分离率介于0.41。0.60之间,不同母质发育的红壤相比,细菌分离率高低依次为:砂页岩〉花岗岩〉第四纪红色粘土;(2)A2PP技术能较好地纯化土壤中的细菌。6个供试原样的细菌多与土壤颗粒及有机质结合在一起,而两相分离技术能够得到较为纯净的细菌个体,土样细菌大多被分离存在于PEG相中,纯化率为63%~78%;细菌提取率介于0.31-0.48,不同母质发育土壤细菌提取率顺序与细菌分离率顺序相同;(3)供试土样的细菌形态都以小球状、小杆状细菌为主。  相似文献   
38.
Aspergillus niger isolated from soil of leather tanning effluent had higher activity to remove chromium then the other fungal isolates. The potency of A. niger was evaluated in shake flask culture by absorption of chromium at pH 6, temperature 30 °C. The toxicity of chromium evaluated in petriplates and soil microcosm seed bioassay test had indicated increase in toxicity with the higher concentration of chromate. A. niger introduced in soil microcosm (40% moisture content) with different concentration of chromate (250, 500, 1000, 1500 and 2000 ppm) removed more than 70% chromium in soil contaminated by 250 and 500 ppm of chromate. However, chromium-contaminated soil (2000 ppm of potassium chromate) mixed with compost (5% and 10%) significantly removed chromium in presence of fungus, A. niger. The results of chromate toxicity in the wheat plants revealed that the peroxidases was induced due to increase of metal stress which was reversed in soil microcosm amended with compost.  相似文献   
39.
40.
 Fungal and bacterial biomass were determined across a gradient from a forest to grassland in a sub-alpine region in central Taiwan. The respiration-inhibition and ergosterol methods for the evaluation of the microbial biomass were compared. Soil fungal and bacterial biomass both significantly decreased (P<0.05) with the shift of vegetation from forest to grassland. Fungal and bacterial respiration rates (evolved CO2) were, respectively, 89.1 μl CO2 g–1 soil h–1 and 55.1 μl CO2 g–1 soil h–1 in the forest and 36.7 μl CO2 g–1 soil h–1 and 35.7 μl CO2 g–1 soil h–1 in the grassland surface soils (0–10 cm). The fungal ergosterol content in the surface soil decreased from the forest zone (108 μg g–1) to the grassland zone (15.9 μg g–1). A good correlation (R 2=0.90) was exhibited between the soil fungal ergosterol content and soil fungal CO2 production (respiration) for all sampling sites. For the forest and grassland soil profiles, microbial biomass (respiration and ergosterol) declined dramatically with depth, ten- to 100-fold from the surface organic horizon to the deepest mineral horizon. With respect to fungal to bacterial ratios for the surface soil (0–10 cm), the forest zone had a significantly (P<0.05) higher ratio (1.65) than the grassland zone (1.05). However, there was no fungal to bacterial ratio trend from the surface horizon to the deeper mineral horizons of the soil profiles. Received: 30 March 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号