首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4418篇
  免费   240篇
  国内免费   193篇
林业   516篇
农学   230篇
基础科学   25篇
  886篇
综合类   1738篇
农作物   264篇
水产渔业   14篇
畜牧兽医   286篇
园艺   492篇
植物保护   400篇
  2024年   32篇
  2023年   74篇
  2022年   131篇
  2021年   167篇
  2020年   263篇
  2019年   206篇
  2018年   100篇
  2017年   145篇
  2016年   219篇
  2015年   158篇
  2014年   208篇
  2013年   256篇
  2012年   277篇
  2011年   318篇
  2010年   228篇
  2009年   275篇
  2008年   255篇
  2007年   257篇
  2006年   223篇
  2005年   175篇
  2004年   147篇
  2003年   92篇
  2002年   90篇
  2001年   67篇
  2000年   69篇
  1999年   66篇
  1998年   44篇
  1997年   41篇
  1996年   44篇
  1995年   34篇
  1994年   32篇
  1993年   23篇
  1992年   29篇
  1991年   24篇
  1990年   22篇
  1989年   25篇
  1988年   17篇
  1987年   9篇
  1986年   4篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1955年   2篇
排序方式: 共有4851条查询结果,搜索用时 546 毫秒
101.
纤维素降解菌对农业有机废弃物发酵进行CO2施肥的作用   总被引:3,自引:0,他引:3  
采用室内培养和大棚试验相结合,对分离的3种纤维素降解菌在有机废弃物发酵释放CO2中的作用及其对增加大棚CO2浓度的效果进行了研究。结果表明,分离获得的三种菌均能明显促进有机废弃物发酵CO2的释放,其中菌A和菌C的效果优于菌B;3种菌混合接种时效果最佳。在大棚栽培条件下,昼间CO2浓度大部分时间低于300μL/L,处于亏缺状态;采用棚中不接种直接发酵也可大幅提高大棚的CO2浓度,但释放的时间只有9 d左右;采用3种菌混合接种的方法棚内全天维持CO2浓度800μL/L以上的时间可达14 d以上。  相似文献   
102.
Species composition of arbuscular mycorrhizal fungi (AMF) was analysed in two differently managed mountain grasslands in Thuringia (Germany). Arbuscular mycorrhizal fungi were studied in the roots of 18 dominant plant species from a total of 56 (32%). Additionally, spores of AMF were isolated from soil samples. Arbuscular mycorrhizal fungi species composition was analysed based on 96 sequences of the internal transcribed spacer of the nuclear ribosomal DNA, 72 originated from mycorrhizal roots, and 24 originated from AMF spores. Phylogenetic analyses revealed a total of 19 AMF species representing all genera of the Glomeromycota except Scutellospora and Pacispora. Despite a different farming intensity, resulting in remarkable differences concerning their plant species diversity (27 against 43 plant species), the diversity of AMF was found to be similar with 11 species on the intensively farmed meadow and ten species on the extensively farmed one. Nevertheless, species composition between both sites was clearly different. It thus seems likely that the AMF species composition, but not necessarily the species number, is related to above ground plant biodiversity in the system under study.  相似文献   
103.
Arbuscular mycorrhizal fungi (AMF) produce a protein, glomalin, quantified operationally in soils as glomalin-related soil protein (GRSP). GRSP concentrations in soil can range as high as several mg g−1 soil, and GRSP is highly positively correlated with aggregate water stability. Given that AMF are obligate biotrophs (i.e. depending on host cells for their C supply), it is difficult to explain why apparently large amounts of glomalin would be produced and secreted actively into the soil, since the carbon could not be directly recaptured by the mycelium (and benefits to the AMF via increased soil structure would be diffuse and indirect). This apparent contradiction could be resolved by learning more about the pathway of delivery of glomalin into soil; namely, does this occur via secretion, or is glomalin tightly bound in the fungal walls and only released after hyphae are being degraded by the soil microbial community? In order to address this question, we grew the AMF Glomus intraradices in in vitro cultures and studied the release of glomalin from the mycelium and the accumulation of glomalin in the culture medium. Numerous protein-solubilizing treatments to release glomalin from the fungal mycelium were unsuccessful (including detergents, acid, base, solvents, and chaotropic agents), and the degree of harshness required to release the compound (autoclaving, enzymatic digestion) is consistent with the hypothesis that glomalin is tightly bound in hyphal and spore walls. Further, about 80% of glomalin (by weight) produced by the fungus was contained in hyphae and spores compared to that released into the culture medium, strongly suggesting that glomalin arrives mainly in soil via release from hyphae, and not primarily through secretion. These results point research on functions of glomalin and GRSP in a new direction, focusing on the contributions this protein makes to the living mycelium, rather than its role once it is released into the soil.  相似文献   
104.
105.
Soil compaction is of great importance in agriculture, because its high levels may adversely affect plant growth and the environment. Since mechanical methods are not very efficient and economical, using biological methods to alleviate the stress of soil compaction on plant growth may be beneficial. The objectives of this study were to: (1) evaluate the effects of soil compaction on corn (Zea mays L.) growth, and (2) test the hypothesis that applying arbuscular mycorrhiza (AM) with different origins can partially or completely overcome the stressful effects of soil compaction on corn growth under unsterilized and sterilized conditions. Corn was planted in unsterilized and sterilized compacted soils, while treated with three species of AM including, Iranian Glomus mosseae, Iranian Glomus etunicatum, and Canadian Glomus mosseae, received from GINCO (Glomales in vitro Collection), Canada. Plant growth variables and soil resistance parameters were determined. AM significantly increased root fresh (maximum of 94% increase) and dry (maximum of 100% increase) weights in the compacted soil. AM with different origins may improve corn growth in compacted soils, though its effectiveness is related to the level of compaction and also to the interaction with other soil microorganisms.  相似文献   
106.
为研究不同产地肉苁蓉种子携带真菌优势菌群和带菌率的差异,采用平皿法对肉苁蓉种子进行外部(洗涤法和干种子法)、内部(种子消毒法与种仁消毒法)带菌检测。结果表明,肉苁蓉种子携带菌群主要为曲霉属(Aspergillus spp.)、交链孢属(Alternaria spp.)、镰孢属(Fusarium spp.)、青霉属(Penicillium spp.)及少量的散囊菌属(Eurotium spp.)。不同产地肉苁蓉种子携带菌群及带菌率差异不显著,但分离频率有一定差异。研究结果为肉苁蓉种子标准的制定提供参考。  相似文献   
107.
通过灭菌盆栽接种试验,研究接种丛枝菌根真菌Glomus caledonium对转双价(Bt+CpTI)棉和常规棉石远321的侵染率和植株养分含量的影响。结果表明,在观测期间,转双价棉与同源常规棉之间根系丛枝菌根真菌侵染率在同一时期均无显著差异,但植株氮、磷养分含量在一些时期明显不同,其变化随棉花品种、生育期不同而不同。转双价棉苗期根系全氮和蕾期、吐絮期地上部全磷以及苗期、蕾期和花铃期根系全磷含量显著高于常规棉(P<0.05),而蕾期地上部全氮和吐絮期根系全氮显著低于常规棉(P<0.05)。聚类分析表明,丛枝菌根真菌侵染率和植株养分含量变化主要受生长时期的影响,转双价棉种植对其影响是非常有限的。  相似文献   
108.
通过盆栽接种试验,研究VA菌根对黄檗(Phellodendron amurense)1年生实生苗的抗性生理指标的影响。结果表明,VA菌根可明显提高黄檗幼苗的抗性指标。可溶性糖含量随着侵染率的增加而增大,并能促进黄檗叶片中可溶性糖向根系中转移,游离脯氨酸和MDA含量逐渐降低,呼吸酶活性和保护酶活性增强。接种Glomus diaphanum的苗木可溶性糖,游离脯氨酸、CAT活性及POD活性变化最为明显,叶片可溶性糖含量为0.5736%,叶片脯氨酸含量为16.27 μg/g,叶片CAT活性为0.3186 mg/(g?min),叶片POD活性为258.32 u/(g?min)。接种G. mosseae对黄檗苗木MDA含量、呼吸酶活性及SOD活性影响最大,叶片MDA含量为0.0119 μmol/g,叶片抗坏血酸氧化酶活性为0.2714 mg/(g?min),叶片多酚氧化酶活性为0.3487 mg/(g?min),叶片SOD活性为274.18 u/(g?FW)。  相似文献   
109.
 We investigated the effect of nursery inoculation techniques on mycorrhizal colonization and sporulation, growth responses, and nutrient (N and P) uptake to determine the suitable nursey inoculation method of wetland rice (Oryza sativa L.) under high-fertility soil conditions. Seedlings were produced in dry-nursery (DN, watered to 60% of –0.03 MPa) and wet-nursery (WN, 3–5 cm water from the soil surface) conditions with or without arbuscular mycorrhizal fungal (Glomus spp.) inoculation. Soil was γ-ray sterilized before use in this experiment. Mycorrhizal fungal colonization was 56% in DN and 23% in WN plants at 6 weeks of growth. The arbuscular mycorrhizal fungal colonization was significantly higher in plants of DN origin than in WN plants after transplantation to the pots, irrespective of growing stages. Mycorrhizal colonization was significantly decreased to 28% in DN plants and to 25% in WN plants at harvest. The grain yield was significantly influenced by nursery conditions. N and P acquisition of wetland rice plants inoculated with Glomus spp. was significantly greater than that of non-inoculated plants at maturity, especially in those originating from DN conditions. P translocation from shoots to grain was accelerated by mycorrhizas. Received: 6 April 1997  相似文献   
110.
The effects of interactions between pseudomonads (Pseudomonas cepacia strains R55 and R85, P. aeruginosa strain R80, P. fluorescens strain R92, and P. putida strain R104) and the arbuscular mycorrhizal fungus Glomus clarum (Nicol. and Schenck) isolate NT4, on spring wheat (Triticum aestivum L. cv. Laura), grown under gnotobiotic and nonsterile conditions, were investigated. Although plant growth responses varied, positive responses to pseudomonad inoculants generally were obtained under gnotobiotic conditions. Shoot dry weight enhancement ranged from 16 to 48%, whereas root enhancement ranged from 82 to 137%. Shoot growth in nonsterile soil, however, was unaffected by pseudomonad inoculants, or reduced by as much as 24%. Shoot growth was unaffected or depressed by G. clarum NT4 whereas early root growth was enhanced by 38%. Significant interactions between the pseudomonad inoculants and G. clarum NT4 were detected. Typically, dual inoculation influenced the magnitude of response associated with any organism applied alone. The effect of these pseudomonads on G. clarum NT4 spore germination was investigated. Germination was inhibited when spores were incubated either on membranes placed directly on bacterial lawns of strains R85 and R104 (i.e., direct assay), or on agarose blocks separated from the bacteria by membranes (i.e., diffusion assay). When the agarose blocks were physically separated from the pseudomonad (i.e., volatile assay), there was no evidence of inhibition, suggesting that a nonvolatile, diffusible substance(s) produced by both strains R85 and R104 may inhibit G. clarum NT4 spore germination. Received: 11 December 1995  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号