全文获取类型
收费全文 | 520篇 |
免费 | 18篇 |
国内免费 | 32篇 |
专业分类
林业 | 12篇 |
农学 | 20篇 |
基础科学 | 8篇 |
177篇 | |
综合类 | 163篇 |
农作物 | 15篇 |
水产渔业 | 46篇 |
畜牧兽医 | 102篇 |
园艺 | 17篇 |
植物保护 | 10篇 |
出版年
2024年 | 3篇 |
2023年 | 5篇 |
2022年 | 6篇 |
2021年 | 10篇 |
2020年 | 9篇 |
2019年 | 8篇 |
2018年 | 8篇 |
2017年 | 13篇 |
2016年 | 19篇 |
2015年 | 29篇 |
2014年 | 26篇 |
2013年 | 25篇 |
2012年 | 17篇 |
2011年 | 54篇 |
2010年 | 45篇 |
2009年 | 42篇 |
2008年 | 31篇 |
2007年 | 39篇 |
2006年 | 33篇 |
2005年 | 21篇 |
2004年 | 12篇 |
2003年 | 17篇 |
2002年 | 12篇 |
2001年 | 8篇 |
2000年 | 8篇 |
1999年 | 12篇 |
1998年 | 12篇 |
1997年 | 6篇 |
1996年 | 10篇 |
1995年 | 4篇 |
1994年 | 4篇 |
1993年 | 2篇 |
1992年 | 7篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 7篇 |
1988年 | 1篇 |
1987年 | 2篇 |
排序方式: 共有570条查询结果,搜索用时 20 毫秒
91.
[目的]为了保证扬州盐水鹅的卫生质量和品质。[方法]对扬州盐水鹅在不同保存温度下菌落总数、菌相和pH值的变化进行试验性观察。[结果]当菌落总数达到106 cfu/g、腿肌pH值为6.5以上时,均有异味产生;腐败过程中的优势菌种,37℃为肠球菌属和葡萄球菌属,20℃为变形杆菌属,4℃为假单胞菌属;对于当天制作并于中午出售的盐水鹅,其保存期限建议值为:37℃不超过7 h,20℃不超过24 h,4℃不超过6 d。[结论]该研究为建立健全可供盐水鹅新鲜度鉴定使用的卫生评价指标提供了依据。 相似文献
92.
93.
探讨不同初始pH值对真姬菇菌丝生长及产量的影响,来确定栽培料最适的初始pH值.结果表明:栽培料以灭菌前初始pH值7.5~8.0,日长速最快,达到6.45~7.14 mm,其产量最高,达到246.5~248.6 g/袋. 相似文献
94.
Many studies have shown that changes in nitrogen (N) availability affect the diversity and composition of soil microbial community in a variety of terrestrial systems, but less is known about the responses of microbes specific to biological soil crusts (BSCs) to increasing N additions. After seven years of field experiment, the bacterial diversity in lichen-dominated crusts decreased linearly with increasing inorganic N additions (ambient N deposition; low N addition, 3.5 g N m−2 y−1; medium N addition, 7.0 g N m−2 y−1; high N addition, 14.0 g N m−2 y−1), whereas the fungal diversity exhibited a distinctive pattern, with the low N-added crust containing a higher diversity than the other crusts. Pyrosequencing data revealed that the bacterial community shifted to more Cyanobacteria with modest N additions (low N and medium N) and to more Actinobacteria and Proteobacteria and much less Cyanobacteria with excess N addition (high N). Our results suggest that soil pH, together with soil organic carbon (C), structures the bacterial communities with N additions. Among the fungal communities, the relative abundance of Ascomycota increased with modest N but decreased with excess N. However, increasing N additions favored Basidiomycota, which may be ascribed to increases in substrate availability with low lignin and high cellulose contents under elevated N conditions. Bacteria/fungi ratios were higher in the N-added samples than in the control, suggesting that the bacterial biomass tends to dominate over that of fungi in lichen-dominated crusts after N additions, which is especially evident in the excess N condition. Because bacteria and fungi are important components and important decomposers in BSCs, the alterations of the bacterial and fungal communities may have implications in the formation and persistence of BSCs and the cycling and storage of C in desert ecosystems. 相似文献
95.
为研究大麦籽粒支链淀粉、直链淀粉和β-葡聚糖积累特性,及淀粉各组分与β-葡聚糖的关系,以2个皮大麦、1个裸大麦和1个糯裸大麦为试验材料,测定花后7、14、21、28d淀粉各组分及β-葡聚糖含量。结果表明,甘啤6号淀粉各组分含量随灌浆推进均逐渐升高,在成熟期达到最大值;甘垦啤7号和甘垦6号均呈先升高后降低趋势,在花后21d有1个峰值。糯大麦C 2-1直链淀粉含量显著低于非糯大麦;支链淀粉含量显著高于非糯大麦,整个灌浆期呈先升高后降低趋势。β-葡聚糖含量均随灌浆时间延长逐渐升高,成熟期含量最高;整个灌浆期糯大麦C 2-1含量显著高于非糯大麦。相关分析表明,直链淀粉/支链淀粉比值与β-葡聚糖含量呈极显著负相关,可以将直链淀粉/支链淀粉比值作为高β-葡聚糖品种选育的一个指标。Logistic方程拟合发现,直链淀粉、β-葡聚糖最终积累量与积累起势与有效积累时间有关,支链淀粉最终积累量取决于最高积累速率和平均积累速率。 相似文献
96.
Fungal N2O production results from a respiratory denitrification that reduces NO3−/NO2− in response to the oxidation of an electron donor, often organic C. Despite similar heterotrophic nature, fungal denitrifiers may differ from bacterial ones in exploiting diverse resources. We hypothesized that complex C compounds and substances could favor the growth of fungi over bacteria, and thereby leading to fungal dominance for soil N2O emissions. Effects of substrate quality on fungal and bacterial N2O production were, therefore, examined in a 44-d incubation after soils were amended with four different substrates, i.e., glucose, cellulose, winter pea, and switchgrass at 2 mg C g−1 soil. During periodic measurements of soil N2O fluxes at 80% soil water-filled pore space and with the supply of KNO3, substrate treatments were further subjected to four antibiotic treatments, i.e., no antibiotics or soil addition of streptomycin, cycloheximide or both so that fungal and bacterial N2O production could be separated. Up to d 8 when antibiotic inhibition on substrate-induced microbial activity and/or growth was still detectable, bacterial N2O production was generally greater in glucose- than in cellulose-amended soils and also in winter pea- than in switchgrass-amended soils. In contrast, fungal N2O production was more enhanced in soils amended with cellulose than with glucose. Therefore, fungal-to-bacterial contribution ratios were greater in complex than in simple C substrates. These ratios were positively correlated with fungal-to-bacterial activity ratios, i.e., CO2 production ratios, suggesting that substrate-associated fungal or bacterial preferential activity and/or growth might be the cause. Considering substrate depletion over time and thereby becoming limited for microbial N2O production, measurements of soil N2O fluxes were also carried out with additional supply of glucose, irrespective of different substrate treatments. This measurement condition might lead to potentially high rates of fungal and bacterial N2O production. As expected, bacterial N2O production was greater with added glucose than with added cellulose on d 4 and d 8. However, this pattern was broken on d 28, with bacterial N2O production lower with added glucose than with added cellulose. In contrast, plant residue impacts on soil N2O fluxes were consistent over 44-d, with greater bacterial contribution, lower fungal contribution, and thus lower fungal-to-bacterial contribution ratios in winter pea- than in switchgrass-amended soils. Real-time PCR analysis also demonstrated that the ratios of 16S rDNA to ITS and the copy numbers of bacterial denitrifying genes were greater in winter pea- than in switchgrass-amended soils. Despite some inconsistency found on the impacts of cellulose versus glucose on fungal and bacterial leading roles for N2O production, the results generally supported the working hypothesis that complex substrates promoted fungal dominance for soil N2O emissions. 相似文献
97.
Penny R. Hirsch Lucy M. Gilliam Saran P. Sohi Jennie K. Williams Ian M. Clark Phil J. Murray 《Soil biology & biochemistry》2009,41(9):2021-2024
If soil communities rely on plant-derived carbon, is biodiversity lost when this primary source is removed? Soil microbial and mesofaunal communities at the Rothamsted Highfield site were compared under a mixed grass sward, arable rotation and a section maintained as a bare-fallow for the past 50 years by regular tillage. Organic matter reserves have been degraded and microbial and mesofaunal numbers and mite diversity have declined in this unique bare-fallow site, where fresh carbon inputs have been drastically reduced. However, it supports a species-rich metabolically active bacterial community of similar diversity to that in soil maintained as grass sward. Thus in contrast to soil mesofauna, bacterial diversity (but not abundance) is apparently independent of plant inputs. 相似文献
98.
Summary Microbial N from 15N-labelled bacterial biomass was investigated in a microcosm experiment, in order to determine its availability to wheat plants. Sterilized soil was inoculated with either bacteria (Pseudomonas aeruginosa alone or with a suspension of a natural bacterial population from the soil) or bacteria and protozoa to examine the impact of protozoa. Plant biomass, plant N, soil inorganic N and bacterial and protozoan numbers were determined after 14 and 35 days of incubation. The protozoa reduced bacterial numbers in soil by a factor of 8, and higher contents of soil inorganic N were found in their presence. Plant uptake of N increased by 20010 in the presence of protozoa. Even though the total plant biomass production was not affected, the shoot: root ratios increased in the presence of protozoa, which is considered to indicate an improved plant nutrient supply. The presence of protozoa resulted in a 65010 increase in mineralization and uptake of bacterial 15N by plants. This effect was more pronounced than the protozoan effect on N derived from soil organic matter. It is concluded that grazing by protozoa strongly stimulates the mineralization and turnover of bacterial N. The mineralization of soil organic N was also shown to be promoted by protozoa.Communication No. 9 of the Dutch Programme on Soil Ecology of Arable Farming Systems 相似文献
99.
北虫草商品化栽培技术的研究 总被引:1,自引:0,他引:1
对4个北虫草菌株、5个培养基配方和3种栽培容器进行了北虫草栽培试验研究,并从经济效益方面对其进行了估算分析.结果表明:金地一号菌株优质、高产、商品性好、经济效益高,可作为今后北方地区室内栽培的当家优良菌株进行推广种植;小麦培养基栽培北虫草,不仅产量高、质量好,而且成本低,故采用小麦培养基更具有优势;塑料瓶栽培北虫草,具有重量轻、利于灭菌、可多次重复使用等特点,可作为今后商品化、规模化、工厂化栽培北虫草之首选容器. 相似文献
100.
Jennifer Adams Krumins John Dighton Dennis Gray Rima B. Franklin Peter J. Morin Michael S. Roberts 《Forest Ecology and Management》2009,258(7):1383-1390
Microbial communities play a pivotal role in soil nutrient cycling, which is affected by nitrogen loading on soil fungi and particularly mycorrhizal fungi. In this experiment, we evaluated the effects of allochthonous nitrogen addition on soil bacteria and fungi in two geographically distinct but structurally similar scrub oak forests, one in Florida (FL) and one in New Jersey (NJ). We applied allochthonous nitrogen as aqueous NH4NO3 in three concentrations (0 kg ha−1 yr−1 (deionized water control), 35 kg ha−1 yr−1 and 70 kg ha−1 yr−1) via monthly treatments over the course of 1 yr. We applied treatments to replicated 1 m2 plots, each at the base of a reference scrub oak tree (Quercus myrtifolia in FL and Q. ilicifolia in NJ). We measured microbial community response by monitoring: bacterial and fungal biomass using substrate induced respiration, and several indicators of community composition, including colony and ectomycorrhizal morphotyping and molecular profiling using terminal restriction fragment length polymorphism (TRFLP). Bacterial colony type richness responded differently to nitrogen treatment in the different sites, but ectomycorrhizal morphotype richness was not affected by nitrogen or location. Both experimental sites were dominated by fungi, and FL consistently supported more bacterial and fungal biomass than NJ. Bacterial biomass responded to nitrogen addition, but only in FL. Fungal biomass did not respond significantly to nitrogen addition at either experimental site. The composition of the bacterial community differed between nitrogen treatments and experimental sites, while the composition of the fungal community did not. Our results imply that bacterial communities may be more sensitive than fungi to intense pulses of nitrogen in sandy soils. 相似文献