This study was aimed to evaluate the effects of inhibiting rumen bacteria,fungi and protozoa with adding linoleic acid and linolenic acid on
in vitro rumen fermentation and fatty acid metabolism in buffaloes.Both fatty acids were supplemented with substrate and roughage (3:7) at the rate of 3% on dry matter (DM) basis in an
in vitro batch culture system,there were 5 repetitions for each group.At the same time,four groups were set up:Control group and inhibition groups of protozoa,bacteria and fungi.After 24 h of incubation,total gas production,CH
4,pH,VFA,NH
3-N,MCP and LFA concentrations were measured.The results showed that:①With the addition of linolenic acid,compared with control group,the gas production decreased significantly after inhibition the growth of bacteria and protozoa,CH
4 production increased significantly after inhibition of the growth bacteria and fungi,and CH
4 production decreased significantly after inhibition of the growth protozoa (
P<0.05).With the addition of linoleic acid,compared with control group,the gas production decreased significantly after inhibiting the growth of bacteria,fungi or protozoa,and CH
4 production was significantly lower than other groups after inhibition of protozoa (
P<0.05).② After inhibiting the growth of bacteria,fungi or protozoa,the pH and MCP concentration were affected significantly with the addition of linolenic acid (
P<0.05),there was no significant effect on NH
3-N concentration with the addition of linoleic acid (
P>0.05).③ Compared with control group,the content of acetic acid and propionic acid was reduced significantly after inhibiting the growth of bacteria,fungi or protozoa (
P<0.05).The butyric acid was reduced significantly after inhibiting the growth of bacteria with the addition of linolenic acid (
P<0.05).The butyric acid was reduced significantly after inhibiting the growth of bacteria,fungi or protozoa with the addition of linoleic acid (
P<0.05).④ Compared with control group, the concentrations of C11:0, C12:0, C13:0, C14:0, C14:1n5, C15:1n5, C16:1n7, C16:0, C18:3n3, C18:2n6c, C18:0, C20:2n6, C20:3n6, C20:1, C20:3n3, C20:0, C21:0, C22:6n3, C22:2n6, C22:0 was reduced significantly after inhibiting the growth of bacteria with the addition of linolenic acid, the concentrations of C12:0, C13:0, C14:0, C15:0, C16:1n7, C16:0, C17:0, C18:3n6, C18:3n3, C18:2n6c, C18:1n9t, C18:0, C18:2(cis-9,trans-11), C18:2(trans-10,cis-12), C20:2n6, C20:1, C20:0, C21:0, C22:6n3, C22:0, C23:0, C24:1n9, C24:0 was reduced significantly after inhibiting the growth of bacteria with the addition of linoleic acid (
P<0.05).The results revealed that the addition of linoleic acid and linolenic acid could significantly manipulate
in vitro rumen fermentation parameters,CH
4 yield and fatty acid composition after inhibiting the growth of bacteria,fungi or protozoa.Protozoa greatly contributed to total gas and CH
4 production while bacteria significantly affected rumen fatty acid metabolism.
相似文献