首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   3篇
  国内免费   41篇
林业   8篇
农学   3篇
基础科学   146篇
  42篇
综合类   60篇
农作物   1篇
水产渔业   1篇
畜牧兽医   3篇
植物保护   7篇
  2024年   1篇
  2023年   8篇
  2022年   10篇
  2021年   6篇
  2020年   12篇
  2019年   9篇
  2018年   1篇
  2017年   10篇
  2016年   9篇
  2015年   8篇
  2014年   12篇
  2013年   17篇
  2012年   14篇
  2011年   14篇
  2010年   21篇
  2009年   21篇
  2008年   18篇
  2007年   14篇
  2006年   15篇
  2005年   8篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
排序方式: 共有271条查询结果,搜索用时 140 毫秒
61.
基于Mixture多相流模型计算双流道泵全流道内固液两相湍流   总被引:3,自引:11,他引:3  
采用Mixture多相流模型、扩展的标准k-ε湍流模型与SIMPLEC算法,应用计算流体力学软件Fluent对双流道泵全流道内的固液两相湍流进行了数值模拟,并将计算结果与清水单相流数值模拟及泵外特性性能试验进行了对比,揭示了不同粒径及颗粒体积浓度条件下双流道泵全流道内的固液两相流动规律.研究结果表明:在叶轮流道内,固相体积浓度分布极不均匀,颗粒主要集中于叶轮出口处的工作面和后盖板上,但是随着颗粒浓度和粒径的减小,会出现颗粒向背面迁移的趋势;在蜗壳流道内,颗粒主要集中于靠近蜗壳出口侧的流道区域,颗粒运动轨迹紊乱,少部分颗粒脱离叶轮后能直接从蜗壳出口流出,大部分颗粒撞击蜗壳壁面,留在蜗壳内转动数圈才能流出;颗粒浓度变化对固相的离析作用影响相对较小;粒径变化对固相的离析作用影响较大,粒径越大,颗粒撞击点愈加集中于叶轮工作面,固相的离析作用越明显;相同体积流量下,泵进出口总压差随颗粒浓度和粒径的增加而减小.  相似文献   
62.
随着风力发电机组装机容量的持续增加,风力发电机组出力特性及其优化运行成为行业关注的热点。针对湍流风下风电机组的动态响应特性,提出抑制风湍流的LPV增益调度控制方法。基于2 MW风电机组模型进行控制器设计,分别采用PI控制算法与LPV控制算法进行仿真计算。机组载荷的波动主要集中在风轮旋转频率1 P的倍频上。仿真计算结果表明在不同风速下,机组显示出不同的运行特性。在低风速时,塔影效应的作用较为显著,在高风速时,湍流对载荷的影响较为明显。相比于PI控制,LPV控制能够跟随机组运行状态调整控制参数,能更好的抑制湍流对机组的影响。在16 m/s湍流风下,功率和齿轮箱低速轴转矩在3P分量上分别降低了35.1%和41.8%。因此,在LPV控制下,齿轮箱的疲劳损伤降低了,发电机的功率波动减缓了。能够增加风电机组的预期寿命,对电网也更加友好。  相似文献   
63.
该文采用粒子图像测速技术研究了1、1.5、2.5 mm 3种不同曝气孔径下不同曝气强度对近膜面流场特性的影响规律,试验中分别研究了以上3种曝气孔径在所给定不同曝气强度下近膜面湍流强度值和液相平均速度值的变化规律。结果表明:近膜面液相平均速度值随曝气强度的增加呈现出先增大后趋于稳定的变化趋势。当曝气强度在24~140 L/h范围内时,湍流强度值随曝气强度呈正相关变化;曝气强度为140 L/h时,随曝气孔中心轴线高度的增大,湍流强度处于高低起伏的波动变化状态,这种波动更有利于膜污染的控制。因此,在此试验条件下最佳曝气强度为140 L/h。该研究为优化膜生物反应器内流场进而改善膜污染提供了一定的理论依据。  相似文献   
64.
低比转速离心泵叶轮内固液两相流的数值分析   总被引:7,自引:5,他引:7  
为了分析离心叶轮内固液流动特性,采用M ixture多相流模型,扩展的标准κε湍流方程与SIMPLEC算法,应用流体动力学软件Fluent对低比转速离心泵叶轮内固液两相湍流进行了数值模拟.分析了多种粒径及浓度条件下的固相体积浓度分布规律.当颗粒直径较小和泥沙浓度较低时,固粒在叶轮出口附近会出现向叶轮背面迁移的趋势;但在离心泵叶轮固液两相流动中,固体颗粒还是主要集中于叶轮工作面,因而会加剧叶轮工作面磨损破坏速度.数值结果表明,在相同的泥沙颗粒直径条件下,水泵扬程随着含沙水流中泥沙浓度的增大而下降.  相似文献   
65.
以雷诺时均N-S方程为基本控制方程,采用标准k-ε双方程湍流模型及多相流模型,利用计算流体动力学软件CFX模拟了发动机冷却水泵内部的三维湍流流场,对某一叶轮严重损坏的发动机冷却水泵外特性性能和汽蚀性能进行预测,并分析叶轮损坏原因,观察冷却水泵叶轮内部汽蚀情况.模拟结果表明:在85 ℃下模型泵的临界汽蚀余量约为107 m,在表压为0时已发生了较为严重的汽蚀现象,叶轮破坏主要是由汽蚀引起.通过与试验数据进行对比验证,水泵在285 L/min设计流量下扬程为61 m,远远低于常温下的数值模拟结果,说明该泵在实际运行工况下已发生严重汽蚀,试验结果与数值预测结论基本吻合.研究结果对于改善发动机冷却水泵的汽蚀性能、防止和减轻空化现象产生提供理论依据,也为判断和模拟发动机冷却水泵的汽蚀破坏提供了一个快速、准确的计算方法.  相似文献   
66.
为探明不同翼端间隙条件下水翼端部间隙区湍流特征及间隙湍流损失机理,以NACA0009型钝尾缘水翼为研究对象,采用基于SST k-ω湍流模型的超大涡模拟方法,分析了间隙宽度τ(分别为0.1c和0.02c)和翼端倒圆半径r(分别为0,0.5%c和1%c)对间隙区涡系结构、湍流雷诺应力、湍动能和湍流损失的影响。结果表明,不同间隙条件下,间隙流动的雷诺应力分布与间隙涡系分布趋于一致,以法向正应力〈v′v′〉和展向正应力〈w′w′〉为主。大间隙下(τ=0.1c),湍动能和雷诺应力主要分布在间隙分离涡区域,速度梯度〈v〉/z和雷诺应力〈w′w′〉主导间隙分离涡区域的湍动能生成,随翼端倒圆半径增加,间隙湍流损失因间隙区雷诺应力的显著减小而降低;小间隙下(τ=0.02c),间隙端壁边界层在间隙泄漏涡的强卷吸作用下形成诱导涡,间隙区湍流损失主要产生于间隙泄漏涡和诱导涡区域内,随翼端倒圆半径增大而增大,其原因是主导诱导涡湍动能生成的雷诺应力〈v′v′〉与速度梯度〈v〉/y和主导间隙泄漏涡湍动能生成的〈v′w′〉与(〈v〉/z+〈w〉/y)均随翼端倒圆半径增加而增大。  相似文献   
67.
低浓度固液两相流相间阻力修正模型研究   总被引:1,自引:0,他引:1  
低浓度固液两相流的相间阻力是影响固相浓度分布计算结果的重要因素。常用于固液两相流数值计算的Wen-Yu模型中,阻力系数是通过标准阻力系数曲线中添加浓度的影响得到的,并没有考虑湍流对阻力系数的影响。由于这一影响是惯性效应和湍动效应的综合体现,针对低浓度含沙水流,研究通过引入惯性因子和湍动因子来分别表达惯性项、湍流强度对阻力系数的影响。根据试验和理论研究,提出了湍流修正函数与惯性因子、湍动因子的表达式形式;利用试验数据并结合最小二乘法,确定了表达式系数,得到了湍流修正函数与颗粒雷诺数、湍流强度的关系式。通过对圆管内低浓度含沙水流的计算表明,运用湍流修正函数修正后的Wen-Yu模型,在不同的进口水流速度下,计算得到的固相浓度分布更接近试验结果。  相似文献   
68.
设P=(χ0,χ1,…,χn)是f∈C^0(I)的一个返回轨道,v∈F(f)n[P],P包含k(1)I个关于v的向心点,在这些条件下,Mai Jiehua得到结论:f有周期为奇数p的周期点,其中I<p≤(n-2)/k 2.这篇注记中,在同样的条件下,用不同的方法得到类似的结论:f有周期为R的周期点,其中:s是偶数时R=S 1;s是奇数,r=0时R=s;s是奇数r≥1时R=s 2(s∈N ,r∈Zk-1满足n=sk r).  相似文献   
69.
湍流斑是近壁剪切流动中的重要现象,它们的生成和发展与流动转捩和湍流的形成密切相关.采用Navier-Stokes方程直接数值模拟和壁面脉冲模型研究平面Cou-ette流动中湍流斑的生成和演化.高精度高分辨率的三维耦合紧致差分格式被用于数值计算.探讨了平面Couette流动中湍流斑的重要特征,包括高频脉动的形成、雷诺应力的产生、扰动的急剧增长和湍流斑形状的变化,特别是流向涡的复杂演化过程.结果表明层流流动中的湍流斑具有湍流流动中一些基本特征.  相似文献   
70.
利用丁酸甲酯的简化机理和计算的生物柴油物性参数,建立了生物柴油燃烧过程CHEMKIN和FIRE软件的耦合计算模型。该模型由于加入了燃料的化学反应动力学机理,同时考虑了化学时间尺度和湍流时间尺度对燃烧的影响,能更准确地反映预混燃烧程度和扩散燃烧的持续时间。通过在模拟中减小喷油器喷孔直径,得出湍流混合强度的增加能够避免燃料和自由基的局部浓度过高,使化学反应发生的区域更广,燃烧更充分,同时也有利于改变碳烟气态前驱物的氧化路径,从而降低碳烟排放。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号