首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  1篇
  2010年   1篇
排序方式: 共有1条查询结果,搜索用时 5 毫秒
1
1.
The effects of repeated drying-rewetting (DRW) cycles on the microbial biomass and activity in soils taken from long-term field experiment plots with different fertilization (FERT) management practice histories were studied. We investigated the hypothesis that soil response to DRW cycles differs with soil fertility gradient modified by FERT management practices. The soils were incubated for 51 days, after exposure to either nine or three DRW cycles, or remaining at constant moisture content (CMC) at field capacity. We found that both DRW and FERT significantly affected soil properties including NH4-N, NO3-N, dissolved organic C (DOC), microbial biomass C (Cmic), basal soil respiration rate (BSR), urease activity (URE) and dehydrogenase activity (DHD). Except for NH4-N and BSR, variation in the properties was largely explained by FERT, followed by DRW, and then their interaction. Irrespective of the soils' FERT treatment, repeated DRW cycles significantly raised the DOC and Cmic levels compared with CMC, and the DRW cycles also resulted in a significant decline in BSR and URE and increase in DHD, probably because the organisms were better-adapted to the drying and rewetting stresses. The variations in soil biological properties caused by DRW cycles showed a significantly negative relationship with the soil organic C content measured prior to the start of the DRW experiments, suggesting that soils with higher fertility are better able to maintain their original biological functions (i.e., have a higher functional stability) in response to DRW cycles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号