首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   6篇
  国内免费   89篇
林业   5篇
农学   27篇
基础科学   96篇
  89篇
综合类   54篇
农作物   7篇
水产渔业   11篇
畜牧兽医   2篇
植物保护   9篇
  2024年   4篇
  2023年   10篇
  2022年   13篇
  2021年   19篇
  2020年   12篇
  2019年   16篇
  2018年   8篇
  2017年   19篇
  2016年   16篇
  2015年   20篇
  2014年   22篇
  2013年   11篇
  2012年   20篇
  2011年   24篇
  2010年   25篇
  2009年   17篇
  2008年   8篇
  2007年   5篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有300条查询结果,搜索用时 31 毫秒
41.
小型通用汽油机排放的研究   总被引:1,自引:0,他引:1  
以168F汽油机为样机,通过改变点火提前角和混合气浓度供给实测了样机的功率、油耗和排放数值。通过发动机示功图采集和放热规律计算,研究了点火提前角和混合气浓度对样机工作过程的影响,探讨了与样机匹配的点火提前角和混合气浓度的最佳值。通过上述试验研究和理论分析,在不使用尾气催化转化器的情况下,使得样机达到EPA第二阶段排放限值,并且具有达到EPA第三阶段排放限值的潜力。  相似文献   
42.
43.
选哈电A934模型叶轮作为对象叶轮,以预定的泵扬程流量特性(H-Q)为目标参数,在保证出口角不变的情况下,将对象叶轮出口直径延拓到目标叶轮直径,形成待优化的目标叶轮.使用CFX-TASCFlow软件进行改型设计,针对干河泵站最大扬程、最小扬程以及设计扬程对应的工况点,优化叶轮的轴面形状、叶片数量、叶片翼型以及进出口安放角等参数,直至CFD预测的H-Q特性接近或达到预期的目标,获得满足目标参数的目标叶轮.在此基础上,使用Ansys CFX对目标叶轮进行全通道水力设计,优化流道几何参数,匹配进水管、固定导叶以及蜗壳的几何形状,改善泵进出口区域的流场特性.在哈尔滨电机厂有限责任公司高水头试验II台上进行的模型试验表明,基于CFD技术开发的新型高扬程大流量离心泵在高海拔地区复杂工况条件下,扬程、流量、效率、空化性能等指标均达到了预定的设计目标.  相似文献   
44.
应用剪切应力输运(SST)湍流模型和基于Rayleigh-Plesset方程的混合物均相流空化模型,求解雷诺时均Navier-Stokes方程,对某混流泵在设计工况时的流场进行数值模拟.根据计算结果获取了泵的扬程衰减曲线,捕捉到泵内空化的发生、发展过程,对轻微空化、临界空化和严重空化3种工况下叶轮内空泡体积分布特性做对比分析.模拟结果表明:该泵空化性能满足设计要求;叶轮内空泡最初发生在叶片吸力面进水边靠近轮缘处,该空泡区随汽蚀余量降低逐渐向轮毂方向和叶轮出口方向延伸;轮缘空泡初生于叶片进水边,沿着叶缘翼型逐渐发展成一条长带;轮毂空泡集中于叶根翼型尾部,轮毂空泡体积分数明显大于轮缘;叶片各通道间空泡分布相似,严重空化时空泡造成叶片通道严重阻塞致使泵扬程急剧下降.  相似文献   
45.
基于温度感知RFID标签的冷链厢体中温度监测   总被引:1,自引:1,他引:0  
针对温度感知RFID(radio frequency identification)标签应用于冷链物流温度监测中缺乏有效数据验证的问题,该研究通过将42个温度感知RFID标签部署于冷链模拟平台中,划分了7个横截面、3个纵截面和两个层,设置了机械降温-冷链维持-自然回温3个不同阶段,同时在42个监测位点中选择7个位点同步部署了便携式温度记录仪,获取了不同条件下的温度监测数据,并与便携式温度记录仪数据和CFD(computational fluid dynamics)模拟数据进行了比较。7个温度感知RFID标签与便携式温度记录仪同步监测位点的数据表明,两种监测方法温差分布于±0.5℃范围内的数据点最多,占43.6%,温差分布于-1.0~-0.5℃区间的数据占了24.6%,考虑到2种设备自身的温度采集精度,温差在±0.8℃范围内可接的,其比例占71.3%,因此利用温度感知RFID标签进行冷链温度监测是可行的。对42个位点在3个不同阶段的温度监测数据表明,机械降温阶段各位点用时在1 h以内、冷链维持阶段大部分位点表现出温度在在0~4℃之间振荡的特征、自然回温阶段用时约49 h。深入分析机械降温阶段及冷链维持阶段不同截面的温度监测数据,结果表明3种截面均表现为降温初始阶段温度差值不稳定、稳定后具有明显的分布特征且离出风口较近降温较快的特点。以横截面2和横截面6平均温度为例,将温度感知RFID标签数据采集数据与CFD模拟数据进行比较,去除测量精度的干扰,截面2的均方根误差为0.73℃、平均相对误差为13.58%、截面6的均方根误差为0.56℃、平均相对误差为10.94%,具有较好的空间一致性。研究结果可为实现冷链物流中低成本、连续的温度监测奠定基础。  相似文献   
46.
冷藏车内温度场和湿度场的数值模拟研究   总被引:5,自引:0,他引:5  
应用流体力学(CFD)软件Fluent,采用k-ζ流模型和非稳态求解方法,对加入货物冷藏车的温度场和湿度场进行了三维非稳态数值模拟计算.得到了冷藏车蒸发器区、中心区、货物区以及边壁等处的温湿度分布。冷藏车内流场的数值模拟结果可以为监测与控制冷藏车内的环境提供技术依据。  相似文献   
47.
气压式玉米精量播种机均匀低损配气机构设计与试验   总被引:2,自引:2,他引:0  
针对气压式玉米精量播种机配气系统存在各行气流分配不均、气压损失及气流速度损耗较大的问题,基于加压导管定常不可压缩湍流模型损失理论,探明了气流损失及分配不均的原因。采用等效仿真简化模型,通过 CFD (computational fluid dynamic,CFD)仿真4种不同气路结构中气压损失及气流速度损耗,分析得出最佳气流分配方式;通过正交试验,得出分配器最优结构形式;确定了配气机构连接段最优母线形状为内凹-外凸组合型曲线,连接段长度以及组合曲线内凹外凸水平长度比是2个影响配气机构性能的关键参数,连接段长度值越大,节锥角越小,且组合曲线内凹外凸水平长度比在3附近时气压损失及速度损耗最小。与常用配气机构进行对比试验,试验结果表明,常用配气机构的气压损失在30%以上,而该低损配气机构能够将气压损失减小到10%以内,气流速度损耗不显著,各行压力一致性变异系数在4%以内。  相似文献   
48.
为了提高风力机的捕风能力,确定最佳的翼型结构,该文以风力机翼型S809为研究对象,设计了S809分离式尾缘襟翼模型,对翼型主体与襟翼之间缝隙进行了局部优化处理,利用AUTOCAD建立了分离式尾缘襟翼几何模型。进而采用计算流体力学方法,对0攻角下,0~16°不同襟翼偏转角的襟翼模型进行了气动性能计算,并对翼型周围流场的压力云图、流线图、压力系数分布进行了理论分析。结果表明:分离式尾缘襟翼结构设计合理,襟翼与主体之间的缝隙对翼型气动性能的影响很小;尾缘襟翼偏转增大了翼型弯度,提高了翼型的升力,随偏转角增大,翼型升力系数及升阻比增大,偏转角在14°时翼型的升阻比最大,为进一步研究分离式尾缘襟翼综合气动性能打下了基础。  相似文献   
49.
搅拌罐内纸浆悬浮液内部流动数值模拟   总被引:1,自引:0,他引:1  
对搅拌罐内纸浆悬浮液的两相流场进行研究,分析搅拌罐内液相流场的流动规律.应用计算流体动力学软件Fluent对搅拌罐内纸浆悬浮液的混合进行数值模拟,采用非结构化四面体网格,利用多重参考系法,选用标准k-ε湍流模型和SIMPLE算法,分别模拟了搅拌器5种不同安装高度下的搅拌流场,并分析了搅拌器的速度流线分布、搅拌器叶片表面的压力分布规律、搅拌罐内固体体积分数的分布和搅拌功率.模拟结果表明:搅拌器形成一个较大的搅拌流场,主体循环较好,由固体体积分数分布图和漩涡所在平面固体体积的分布规律明确了倒锥体区域和漩涡区的位置.由搅拌器的功率系数对搅拌器的性能进行判定,根据此判定依据可知,所设计的搅拌器性能优良,研究结果对搅拌器的优化设计具有一定的参考价值.  相似文献   
50.
为精准设计工厂化圆形循环水养殖池的进水结构,基于计算流体动力学技术,采用Fluent软件建立数值模型模拟进水管在不同进水角度θ、进径比d/r、进水高度h工况下养殖池内的流场分布特性,并以平均速度vavg和均匀系数U为评价指标,对进水结构进行优化分析,在物理试验证明该数值模型能较好地模拟养殖池内的流场特征的基础上,模拟了不同进水结构对流场分布的影响。结果显示:在相同条件下,进水角度θ在40°时vavg取得最大值,水层之间的U差异较小;进径比d/r在0.1时vavgU取得较大值,水层之间的U差异较小;进水高度h在100~400 mm时vavg取得较大值,且在h=100 mm时水层之间的U差异最小。研究表明,当进水角度θ=40°、进径比d/r=0.1、进水高度h=100 mm时,养殖池内流场特性处于较优状态。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号