首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   923篇
  免费   36篇
  国内免费   143篇
林业   75篇
农学   32篇
基础科学   361篇
  331篇
综合类   182篇
农作物   15篇
水产渔业   19篇
畜牧兽医   35篇
园艺   6篇
植物保护   46篇
  2024年   2篇
  2023年   18篇
  2022年   25篇
  2021年   33篇
  2020年   27篇
  2019年   28篇
  2018年   17篇
  2017年   26篇
  2016年   47篇
  2015年   38篇
  2014年   36篇
  2013年   58篇
  2012年   77篇
  2011年   66篇
  2010年   46篇
  2009年   51篇
  2008年   48篇
  2007年   58篇
  2006年   54篇
  2005年   41篇
  2004年   33篇
  2003年   39篇
  2002年   29篇
  2001年   23篇
  2000年   25篇
  1999年   27篇
  1998年   19篇
  1997年   17篇
  1996年   15篇
  1995年   16篇
  1994年   8篇
  1993年   19篇
  1992年   11篇
  1991年   7篇
  1990年   4篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1974年   1篇
排序方式: 共有1102条查询结果,搜索用时 19 毫秒
111.
Recent community based actions to ensure the sustainability of irrigation and protection of associated ecosystems in the Murrumbidgee Irrigation Area (MIA) of Australia has seen the implementation of a regional Land and Water Management Plan. This aims to improve land and water management within the irrigation area and minimise downstream impacts associated with irrigation. One of the plan objectives is to decrease current salt loads generated from subsurface drainage in perennial horticulture within the area from 20 000 tonnes/year to 17 000 tonnes/year. In order to meet such objectives Controlled Water table Management (CWM) is being investigated as a possible ‘Best Management Practice’, to reduce drainage volumes and salt loads.During 2000–2002 a trial was conducted on a 15 ha subsurface drained vineyard. This compared a traditional unmanaged subsurface drainage system with a controlled drainage system utilizing weirs to maintain water tables and changes in irrigation scheduling to maximize the potential crop use of a shallow water table. Drainage volumes, salt loads and water table elevations throughout the field were monitored to investigate the effects of controlled drainage on drain flows and salt loads.Results from the experiment showed that controlled drainage significantly reduced drainage volumes and salt loads compared to unmanaged systems. However, there were marked increases in soil salinity which will need to be carefully monitored and managed.  相似文献   
112.
含河渠的分洪区洪水演进数值模拟   总被引:3,自引:3,他引:3  
在分洪区内存在河渠的情况下,根据水流在河渠外区域和河渠内运动特点的不同,对已有的分洪区二维水流数学模型进行拓展,建立了相应的数学模型。该模型计算时能考虑河渠两侧有、无堤防两种情况,通过对概化地形的计算,证明了模型的合理性。  相似文献   
113.
Direct measurement of soil saturated hydraulic conductivity (Ks) is time-consuming and therefore costly. The ROSETTA pedotransfer function model is able to estimate Ks from soil textural data, bulk density and one or two water retention points. This study evaluated the feasibility of running the DRAINMOD field-scale hydrological model with Ks input produced using ROSETTA. A hierarchical approach was adopted to estimate Ks using ROSETTA, with four limited-more extended sets of soil information used as inputs: USDA textural class (H1); texture (H2); texture and bulk density (H3); texture, bulk density, water retention at −33 kPa (θ33 kPa) and −1500 kPa (θ1500 kPa) (H4). ROSETTA-estimated Ks values from these four groups (H1-H4) were used in DRAINMOD to simulate drain outflows during a 4-year period from a conventional drainage plot (CD) and two controlled drainage plots (CWT1 and CWT2) located in south-east Sweden. The DRAINMOD results using ROSETTA-estimated Ks values were compared with observed values and with model results using laboratory-measured Ks values (H0). Deviations in simulated drainage outflow (D), infiltration (F) and evapotranspiration (ET) resulting from the use of ROSETTA-estimated rather than laboratory-measured Ks values were evaluated. During the study period, statistical comparisons showed good agreement on a monthly basis between observed and DRAINMOD-simulated drainage rates using five soil datasets (H0, H1, H2, H3 and H4). The monthly mean absolute error (MAE) ranged from 0.57 to 0.82 cm for CD, 0.38 to 0.41 cm for CWT1, and 0.15 to 0.22 cm for CWT2. On a monthly basis, the modified coefficient efficiency (E′) values were in the range of 0.62 to 0.74 for CD, 0.72 to 0.74 for CWT1, and 0.79 to 0.86 for CWT2. The modified index of agreement (d′) for monthly predictions ranged from 0.80 to 0.86 cm for CD, 0.87 to 0.88 cm for CWT1, and 0.89 to 0.93 cm for CWT2. The absolute values of the percent-normalised error (NE) on an overall basis when using ROSETTA-estimated rather than laboratory-measured Ks values were less than 3% in E, less than 1% in F, and less than 15% in D. The results suggest that ROSETTA-estimated Ks values can be used in DRAINMOD to simulate drainage outflows as accurately as laboratory-measured Ks values (H0) in coarse-textured soils.  相似文献   
114.
不同灌排模式稻田排水中氮磷流失规律   总被引:6,自引:0,他引:6  
为了研究不同灌排模式稻田排水中氯磷流失规律,以集成合理的节水灌溉与控制排水技术,在江苏高邮开展田间试验.试验区排水斗沟出口处设水位调控闸门,在水稻不同生育阶段对排水沟水位及田间水分进行控制,形成新型的控制灌排模式.与常规灌排模式进行对比,两年田间试验成果表明,控制灌排模式较常规灌排模式节水16.7%,增产7.1%,排水总量减少54%,水稻全生育期稻田排水中NH4+;-N、NO3-N与TP流失总量分别减少38.07%、82.29%和52.15%,节水减排和降污效果显著.采用控制灌排模式,通过实施灌水调控和排水管理.控制了氮磷流失关键时期的排水量.高效利用了水分和养分,取得了节水高产、减排控污的效果.  相似文献   
115.
目前农业排灌站普遍存在功率因数低、无功损耗大的情况.无功就地补偿技术,可以有效地提高供配电系统的功率因数,达到节能的效果.为此,针对6kV配电站的补偿方式进行了仿真分析,论证了在排灌泵站中采用无功就地补偿技术的经济可行性,并对推广该技术存在的问题,提出了一些建议.  相似文献   
116.
Fractal image coding techniques usually partition the input image into small range blocks. This artificially introduces boundaries into the image resulting in the unpleasant blocking artifacts in the decoded images especially at high compression rate. Because the effect is especially responsible for the restrictions of the block-based coders, the solutions must be sought to reduce this blockiness. Recently two possible schemes have been proposed by other researchers: One may try to use overlapping blocks in the fractal transform, and the other to employ the combined fractal wavelet approach. An alternative solution is proposed, which employs the bilinear interpolation techniques and the resolution independence of fractal coding, in the sense that an image can be decoded at higher or lower resolutions than the original. Experiments show that the proposed scheme can eliminate the blocking artifacts.  相似文献   
117.
In the design of wood-based, enhanced-denitrification bioreactors to treat nitrate in agricultural drainage, the consideration of the highly variable flow rates and nitrate concentrations inherent to many drainage systems is important. For optimized mitigation of these nitrate loads, it may be best to contain drainage water prior to treatment in order to facilitate longer, more constant retention times rather than to allow cycles of flushing and dry periods in the denitrification bioreactor. Simulated containment prior to bioreactor treatment compared to passing drainage directly through a bioreactor was investigated with the use of six pilot-scale denitrification bioreactors constructed with plywood and filled with Pinus radiata woodchips at Massey University No. 4 Dairy Farm (Palmerston North, New Zealand). Initial bromide tracer tests were followed with a series of five simulated drainage events each at successively declining inflow nitrate concentrations. During each drainage event, three pilot bioreactors received a simulated hydrograph lasting 1.5 days (Non-Containment treatment) and three pilot bioreactors received the same total drainage volume treated over 4 days at a constant flow rate (i.e. constant retention time; Containment treatment). Results showed significantly different total mass removal efficiencies of 14.0% vs. 36.9% and significantly different removal rates of 2.1 g N m−3 day−1 vs. 6.7 g N m−3 day−1 for the Non-Containment and Containment treatments, respectively, which indicated that treating drainage at constant retention times provided more optimized nitrate removal. While this work was done to evaluate treatment under New Zealand drainage conditions, it also provides valuable information for optimizing agricultural drainage denitrification bioreactor performance in general.  相似文献   
118.
Leaching of nitrogen from arable land can lead to pollution of groundwater and surface water. Various measures have been implemented in agriculture to reduce leaching, but there is still potential to do more. To find the best agricultural management regime to limit the problem, leaching from soils under different management must be measured. Different methods to estimate leaching are available, but they have not been thoroughly evaluated. This study compared (a) leaching of nitrogen from five different fertilizer treatments differing in amount and source (mineral and organic) of nitrogen and (b) two different methods for measuring leaching (tile-drained field plots and lysimeters). Nitrogen leaching from five different fertilizer treatments was studied for three years in a tile-drained field facility and for three of the treatments also for 16 months in a lysimeter facility. Leaching from organic and mineral nitrogen sources was similar in the three-year field study. Mineral nitrogen input above the economic optimum tended to give greater leaching (by 24%–43%) than nitrogen input at the expected optimum. Measurements in lysimeters and tile-drained field plots gave similar results, although leaching values tended to be slightly higher (by 18%–25%) in the tile-drained field. Overall, both facilities give reliable estimates of nitrogen leaching and are suitable for leaching studies.  相似文献   
119.
旱涝交替胁迫对水稻荧光参数与光合特性的影响   总被引:1,自引:0,他引:1  
为探明控制灌排条件下旱涝交替胁迫对水稻不同生育阶段荧光参数和光合特性的影响,以农田水位为调控技术指标,采用蒸渗测坑进行水稻栽培试验,在分蘖期、拔节孕穗期、抽穗开花期、乳熟期分别设置先旱后涝胁迫(HZL)、先涝后旱胁迫(LZH)2种旱涝交替胁迫模式,测定叶片相对叶绿素含量(SPAD)、主要荧光参数及光合指标的变化。结果表明,旱涝交替胁迫会减少SPAD,其中HZL处理产生的抑制作用更强;分蘖期、拔节孕穗期旱涝交替胁迫光能转化效率、光化学淬灭系数、最大潜在电子传输速率、光饱和点、净光合速率、潜在水分利用效率等荧光参数和光合指标可以恢复甚至超过对照水平,而在抽穗开花期、乳熟期产生不可逆的影响;旱涝交替胁迫下蒸腾速率、气孔导度分别在分蘖期、乳熟期受到抑制,拔节孕穗期得到促进;HZL处理提高了非光化学淬灭系数,其他主要荧光参数和光合指标HZL低于LZH处理。水稻分蘖期、拔节孕穗期LZH处理对光合作用的补偿作用更大,抽穗开花期、乳熟期HZL处理对光合作用的抑制作用较LZH处理更明显,因此,在水稻生育后期应尽量避免重度的旱涝交替胁迫,尤其要避免发生旱涝急转。  相似文献   
120.
Leersia oryzoides (rice cutgrass) is an obligate wetland plant common to agricultural drainage ditches. The objective of this greenhouse study was to expose plants to various flooding and aqueous nitrogen (N) concentrations and then to quantify the allocation of nutrients and biomass to plant components. Plants in the continuously flooded treatment (CF) had the highest tissue concentrations of copper (Cu), sulfur (S), zinc (Zn), potassium (K), sodium (Na), and manganese (Mn) in one or more plant components. Plants in the partially flooded treatment (PF) had the highest concentrations of magnesium (Mg) in leaves. The N input affected phosphorus (P) and S concentrations in roots. Leaf, stem, and root biomass were highest in PF plants. Rhizome biomass was the lowest in CF plants. These results indicate that L. oryzoides may significantly affect elemental concentrations in surface waters by its ability to uptake various elements and subsequent sequestration in various biomass components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号