首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2421篇
  免费   38篇
  国内免费   292篇
林业   61篇
农学   79篇
基础科学   1832篇
  292篇
综合类   384篇
农作物   5篇
水产渔业   28篇
畜牧兽医   59篇
园艺   8篇
植物保护   3篇
  2024年   17篇
  2023年   38篇
  2022年   112篇
  2021年   96篇
  2020年   106篇
  2019年   101篇
  2018年   73篇
  2017年   71篇
  2016年   127篇
  2015年   125篇
  2014年   156篇
  2013年   150篇
  2012年   207篇
  2011年   167篇
  2010年   117篇
  2009年   133篇
  2008年   115篇
  2007年   132篇
  2006年   119篇
  2005年   95篇
  2004年   76篇
  2003年   63篇
  2002年   49篇
  2001年   45篇
  2000年   43篇
  1999年   31篇
  1998年   31篇
  1997年   31篇
  1996年   42篇
  1995年   23篇
  1994年   16篇
  1993年   11篇
  1992年   9篇
  1991年   6篇
  1990年   2篇
  1989年   1篇
  1988年   7篇
  1987年   6篇
  1986年   2篇
排序方式: 共有2751条查询结果,搜索用时 0 毫秒
71.
为了解决输送核原料的液下泵工作过程中存在无色剧毒氟化氢气体溢出的问题,在此类液下泵的主轴上选取磁流体为密封材料,应用磁流体密封技术,设计了一套采用螺旋齿的磁流体密封结构,并推导出了密封压差设计公式.通过理论分析和试验研究,讨论了液下泵在液体工作环境下的转速、温度、磁流体体积、密封间隙和磁场强度对磁流体密封承压能力的影响.结果表明,设置在液下泵上的磁流体密封结构的承压能力随着转速、温度和密封间隙的增大而下降;随着磁场强度的升高而增大,且密封承压能力试验值最大可达8×10^5Pa;随着磁流体体积的增大而增大,但是当磁流体体积超过一定的临界值后,磁流体密封的承压能力将不再随着磁流体体积的改变而改变,仅仅保持在某一恒定值.该磁流体密封结构的密封方法将会有效地解决输送核原料的液下泵中害氟化氢气体泄漏的问题.  相似文献   
72.
高阶椭圆锥齿轮泵的流量特性   总被引:1,自引:0,他引:1  
针对齿轮泵的变量功能及非圆锥齿轮的应用,提出了一种新型相交轴变量齿轮泵——高阶椭圆锥齿轮泵.该齿轮泵是以高阶椭圆锥齿轮为工作转子的非圆锥齿轮泵.根据齿轮的空间啮合原理,给出了其工作转子高阶椭圆锥齿轮副的齿形生成方法.基于该种齿轮特殊的运动学特性,分析了高阶椭圆锥齿轮泵的传动特性,并对其工作结构进行了设计.依据球面微分理论,推导出了高阶椭圆锥齿轮泵的平均理论流量公式、瞬时流量公式以及流量脉动公式,同时分析了高阶椭圆锥齿轮的偏心率、阶数等参数对其流量特性的影响.在同等参数模型及工况条件下,将对高阶椭圆锥齿轮泵的平均理论流量、瞬时流量及其变量范围与圆柱齿轮泵和非圆柱齿轮泵的流量特性进行了对比分析,获得了该锥齿轮泵在同等条件下排量最大、变量范围最大的特点.  相似文献   
73.
轴流泵叶顶泄漏流对水泵内外特性有重要影响,从控制叶片载荷角度建立了轮缘载荷分布型式与叶顶泄漏流的关系。基于三维反问题设计方法设计得到了具有前载、中载和后载3种典型轮缘载荷分布型式的轴流泵叶轮模型,采用三维湍流模拟技术研究了上述3种轮缘载荷分布型式对轴流泵叶顶泄漏流及其诱导的泄漏涡流动的影响。结果表明,相对于轮缘前载型叶轮和轮缘中载型叶轮,轮缘后载型叶轮可有效消除叶片进口附近低压区,有利于叶轮空化性能;小流量工况性能有所提高,有效抑制流量扬程曲线的驼峰现象;同时轮缘后载型叶轮具有更好的小流量工况压力脉动性能。  相似文献   
74.
轴流式油气混输泵压缩级流场CFD模拟分析   总被引:8,自引:3,他引:8  
利用Fluent计算软件,采用非定常滑动网格技术和非结构网格来模拟油气混输泵单个压缩级三维流场,通过对气液两相介质在流道内的流动情况的分析,为改进压缩级的设计提供了依据。试验证明,该方法在油气混输泵的设计中是有效的。  相似文献   
75.
离心泵理论扬程的计算   总被引:5,自引:3,他引:5  
通过对不同滑移系数计算公式的比较与分析,揭示了滑移系数是离心泵理论扬程计算结果准确与否的关键,提出了对于不同比转数的离心泵滑移系数应采用不同的计算公式。以优秀离心泵为基础,采用回归分析法对离心泵理论扬程的计算进行了修正。计算实例表明:修正后的理论扬程公式计算结果更加准确,为工程实际应用提供了一种较为准确的计算方法。  相似文献   
76.
在进行无过载双流道排污泵设计时,利用公式预测的性能和试验结果有较大误差。对此,通过流动分析指出,普通离心泵相对液流角与叶片出口安放角相差不大,而在双流道叶轮出口速度三角形中,相对液流角与叶片出口安放角相差较大,因此,用叶片出口安放角进行性能预测是造成误差的主要原因。提出了双流道泵无过载性能预测的计算方法:!2应取叶片背面出口安放角;计算叶片排挤系数时,叶片厚度应取内流道出口处叶片厚度。试验表明,该计算方法能大大提高性能预测的准确性,预估最大轴功率值及其位置较普通计算方法误差大幅度减小。  相似文献   
77.
为研究叶轮与蜗壳的动静干涉作用,采用三维PIV对一双叶片离心泵最优工况下叶轮流道内3个截面内的流动进行了测量,每个截面内测量9个叶片位置.结果表明:随着叶片与隔舌距离的不同,叶轮流道内的相对速度场和轴向速度场发生了明显的变化;当叶片在隔舌与蜗壳1断面间时,流道内的流量最小,相对速度场分布最为均匀;在前盖板附近吸力面的流道出口出现了低速区,形成了射流-尾迹结构,并在流道进口发现较强的轴向速度;当叶片随着旋转方向远离隔舌时,流道内的流量逐渐增大,在叶片压力面进口出现了流动分离并产生了旋涡,而流道出口的相对速度变得平稳,同时流道进口的轴向速度减弱;当叶片随着旋转方向靠近隔舌时,叶轮流道内的流量逐渐减小,流道进口的旋涡减弱并消失,流道出口的压力面附近相对速度降低,吸力面附近的相对速度增大,同时流道进口的轴向速度继续减弱.  相似文献   
78.
为了研究高剪切匀浆泵对物料的剪切混合效果,掌握剪切泵内流场的宏观规律和速度特性,应用三维造型软件Pro/E建立高剪切匀浆泵的水力模型,采用计算流体动力学的数值计算方法,基于Mixture混合模型,扩展的标准k-ε湍流方程及SIMPLEC算法对高剪切匀浆泵进行固液两相流的数值模拟.为了减小网格数量对计算结果的影响,对高剪切匀浆泵进行了网格的无关性检验.对不同流量和转速工况下的高剪切匀浆泵进行了数值模拟及横向比较,分析了流量和转速对剪切泵内流场的影响规律.分析结果表明:物料在经过剪切外腔后混合均匀程度显著提高,说明该剪切泵能对物料起到较好的混合均匀作用;随着流量的增大,固液两相混合均匀化速率变慢;随着转速的增大,两相混合均匀程度及速率变快,但改变转速只对转轮部分有影响,对进口区域的固相体积分数影响不大.  相似文献   
79.
泵用压电振子与泵腔体积变化的测试研究   总被引:1,自引:0,他引:1  
为了准确获得压电泵泵腔体积的变化量,针对影响泵腔体积变化的关键因素——压电振子的变形特性进行分析,并采取非接触的测量方式对基板直径为65 mm,陶瓷直径为60 mm的圆形压电振子进行变形测试.在测试中对该压电振子的中心点在不同电压信号驱动下振幅随频率、驱动电压的变化规律以及压电振子径向各点在正弦电压信号驱动下振幅随半径的变化规律进行了研究.根据压电振子径向各点振幅的变化规律利用Matlab软件进行二次函数曲线拟合计算,得到压电振子的径向切面变形拟合曲线,根据拟合曲线,建立了压电泵泵腔体积变化量的理论计算方法.结果表明:压电振子中心点振幅随频率的增大而逐渐减小,随驱动电压的增大而增大;径向各点振幅随各点半径的增大而减小;拟合计算结果与实测数据基本吻合,最大相对误差仅为6.96%;利用压电泵泵腔体积变化量的理论计算方法,计算得到利用该圆形压电单晶片振子制作的压电泵在100 V,30 Hz正弦电压信号的作用下,泵腔每次振动产生的体积变化量约为34.009 mm3,理论上最大输出流量为61.216 mL/min.  相似文献   
80.
应用剪切应力输运(SST)湍流模型和基于Rayleigh-Plesset方程的混合物均相流空化模型,求解雷诺时均Navier-Stokes方程,对某混流泵在设计工况时的流场进行数值模拟.根据计算结果获取了泵的扬程衰减曲线,捕捉到泵内空化的发生、发展过程,对轻微空化、临界空化和严重空化3种工况下叶轮内空泡体积分布特性做对比分析.模拟结果表明:该泵空化性能满足设计要求;叶轮内空泡最初发生在叶片吸力面进水边靠近轮缘处,该空泡区随汽蚀余量降低逐渐向轮毂方向和叶轮出口方向延伸;轮缘空泡初生于叶片进水边,沿着叶缘翼型逐渐发展成一条长带;轮毂空泡集中于叶根翼型尾部,轮毂空泡体积分数明显大于轮缘;叶片各通道间空泡分布相似,严重空化时空泡造成叶片通道严重阻塞致使泵扬程急剧下降.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号