首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5039篇
  免费   206篇
  国内免费   312篇
林业   338篇
农学   305篇
基础科学   171篇
  1388篇
综合类   1726篇
农作物   242篇
水产渔业   261篇
畜牧兽医   649篇
园艺   313篇
植物保护   164篇
  2024年   22篇
  2023年   50篇
  2022年   101篇
  2021年   115篇
  2020年   133篇
  2019年   154篇
  2018年   101篇
  2017年   198篇
  2016年   233篇
  2015年   197篇
  2014年   221篇
  2013年   322篇
  2012年   364篇
  2011年   416篇
  2010年   343篇
  2009年   325篇
  2008年   275篇
  2007年   315篇
  2006年   280篇
  2005年   194篇
  2004年   172篇
  2003年   137篇
  2002年   89篇
  2001年   95篇
  2000年   96篇
  1999年   77篇
  1998年   58篇
  1997年   74篇
  1996年   68篇
  1995年   58篇
  1994年   58篇
  1993年   31篇
  1992年   35篇
  1991年   32篇
  1990年   26篇
  1989年   26篇
  1988年   16篇
  1987年   9篇
  1986年   10篇
  1985年   11篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有5557条查询结果,搜索用时 171 毫秒
951.
Recycling organic waste in agricultural soils is a valid solution. We performed short‐term experiments to investigate the fate of urban sludge and composts, in mine spoils, cultivated or uncultivated, and reclaimed soils located in Florence and Milan, Italy. The samples, either treated or untreated, were fractionated by density into light (<1.63 Mg m?3) and heavy (>1.63 Mg m?3) fractions. The fractions were analyzed for total carbon (C) and nitrogen (N) contents and for δ 13C and δ 15N isotopes, and they were characterized by 13C NMR spectroscopy. Treatment increased the heavy fraction. The addition of sludge in the Florence area acts in synergy with the cultivation, increasing the light fraction (LF). In the Milan area, the LF tends to be decomposed and apparently transformed into HF. The addition of amendments or cultivation enhances the decomposition with release of carbon dioxide. For future research, we suggest lengthening the time of the experiments to integrate climatic variations.  相似文献   
952.
A dichromate digestion and spectrophotometric procedure is proposed for estimating soil microbial biomass carbon (C) in association with fumigation–extraction. The recommended procedure uses a volume (1.6 ml) of 0.5 M potassium sulfate (K2SO4) soil extracts and oxidant solution (dichromate–sulfuric acid, 2.4 mL), mixed with a volume (4 mL) for digestion at 140 °C for 30 min. The digested solution is then directly read for absorbance at 350 nm using a spectrophotometer, and the C in the digested soil extracts is measured against glucose standards. The KEC (indicating the extractable part of microbial biomass C after fumigation) value is estimated as 0.33 for the proposed method. There are good correlations between soil microbial biomass C measured by the proposed method, the dichromate digestion titration, and oven oxidation by total organic C (TOC) analytical method. This method is a simple, rapid, and economical procedure associated with fumigation–extraction for biomass C analysis.  相似文献   
953.
Changes in soil properties and vegetable growth were quantified on a low-fertility tropical soil. Four treatments (two composts, urea, and control) were applied to an Oxisol (Rhodic Haplustox, Wahiawa series) in a field on Oahu, Hawaii. Chinese cabbage (Brassica rapa, Chinensis group) and eggplant (Solanum melongena) were grown sequentially as test crops. Soil quality as measured by hot-water-soluble carbon, dehydrogenase activity, and cation exchange capacity (CEC) increased by compost amendments. Total organic carbon or carbon dioxide (CO2) respiration rate did not correlate with the soil amendments. Nitrogen (N) nutrition was the main factor that improved growth and carotenoid content in cabbage. The urea treatment promoted better growth in cabbage, whereas good-quality compost, made of grass clippings/tree trimmings, lime, and rock phosphate yielded better growth in eggplant, suggesting organic N requires time to mineralize and to be available to crops.  相似文献   
954.
We studied quantitative and qualitative changes in soil organic matter (SOM) due to different land uses (reference woodland versus cultivated) on six soils from Tanzania (Mkindo and Mafiga), Zimbabwe (Domboshawa and Chickwaka), and South Africa (Hertzog and Guquka). Structural characteristics of the humic acids (HAs) were measured by Curie-point pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) and solid-state 13C nuclear magnetic resonance (CPMAS 13C NMR) spectroscopy. Significant changes in concentration and composition of SOM were observed between land uses. Losses of organic carbon after cultivation ranged from 35% to 50%. Virgin soils showed large proportions of colloidal humus fractions: humic acids (HAs) and fulvic acids (FAs) but negligible amounts of not-yet decomposed organic residues. The change in land use produced a contrasting effect on the composition of the HAs: a noteworthy “alkyl enhancement” in Mkindo soil and “alkyl depletion” in Chikwaka and to a lesser extent in Domwoshawa. The remaining soils displayed only minor alterations.  相似文献   
955.
Soil, crop, and fertilizer management practices may affect quality of organic carbon (C) and nitrogen (N) in soil. A long-term field experiment (growing barley, wheat, or canola)was conducted on a Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, to determine the influence of 19 years (1980 to 1998) of tillage [zero tillage (ZT) and conventional tillage (CT)], straw management [straw removed (SRem) and straw retained (SRet)], and N fertilizer rate (0, 50, and 100 kg N ha?1 in SRet and 0 kg N ha?1 in SRem plots) on macro-organic matter C (MOM-C) and N (MOM-N), microbial biomass C (MB-C), and mineralizable C (Cmin) and N (Nmin) in the 0- to 7.5-cm and 7.5- to 15-cm soil layers. Treatments with N fertilizer and SRet generally had a greater mass of MOM-C (by 201 kg C ha?1 with 100 kg N ha?1 rate and by 254 kg C ha?1 with SRet), MOM-N (by 12.4 kg N ha?1 with 100 kg N ha?1 rate and by 8.0 kg N ha?1 with SRet), Cmin(by 146 kg C ha?1 with 100 kg N ha?1 rate and by 44 kg C ha?1 with SRet), and Nmin(by 7.9 kg N ha?1 with 100 kg N ha?1 rate and by 9.0 kg N ha?1 with SRet)in soil than the corresponding zero-N and SRem treatments. Tillage, straw, and N fertilizer had no consistent effect on MB-C in soil. Correlations between these dynamic soil organic C or N fractions were strong and significant in most cases, except for MB-C, which had no significant correlation with MOM-C and MOM-N. Linear regressions between crop residue C input and mass of MOM-C, MOM-N, Cmin, and Nmin in soil were significant, but it was not significant for MB-C. The effects of management practices on dynamic soil organic C and N fractions were more pronounced in the 0- to 7.5-cm surface soil layer than in the 7.5- to 15-cm subsoil layer. In conclusion, the findings suggest that application of N fertilizer and retention of straw would improve soil quality by increasing macro-organic matter and N-supplying power of soil.  相似文献   
956.
This study looks at the ability of organic wastes from different sources to efficiently promote chemical attributes and enhance nitrogen (N) concentrations in an Oxisol Ustox with a sandy texture. This experiment was performed in a randomized design using wastes from pulp mill sludge, petrochemical complex, sewage treatment plant, dairy factory sewage treatment plant, and pulp fruit industry, on 10 different days. Results showed that addition of the wastes to the soil amended their chemical attributes. The different characteristics of the organic wastes seem to have influenced the N mineralization rates during the 112 days. There was a close relationship between the N mineralization and organic waste C/N ratio: blank soil (SP) (Nma = 3.17) < Treated pulp mill sludge (PMS) (Nma = 30.49, C/N 63.6:1) < Organic compost from the fruit pulp industry (FPW) (Nma = 67.6, C/N 11.9:1) < Treated urban sewage sludge (USS) (Nma = 76.22, C/N 7.2:1) = Petrochemical complex sludge (PS) (Nma = 84.0, C/N 7.7:1) < Treated dairy industry sewage sludge (DSS) (Nma = 102.17, C/N 8.4:1).  相似文献   
957.
The goal of this experiment was to investigate the effect of aeration quantity (0, 11, 33, 55, and 77 L·min?1) on the growth of aerated compost extracts from a pig manure–straw compost. When the aeration quantity was 11 L·min?1, lettuce root growth enhancement of normalized compost extracts was at a maximum. As the aeration quantity increased, the total water-soluble organic carbon (TWSOC), total nitrogen (TN), total phosphorus (TP), humic carbon (humic C) content, and humification degree of compost extracts improved gradually. No differences in functional group structure were found among the aerated compost extracts. The positive root growth could be attributed to physicochemical and spectral characteristics, such as TN content, humic substances content, humification, aromaticity, and the low content of carboxyl groups. In conclusion, the aeration quantity of 11 L·min?1 was suitable for the production of aerated compost extracts, which obtained much greater promotion growth.  相似文献   
958.
ABSTRACT

The interactive effect of biochar, cattle manure and nitrogen (N) fertilizer on the dynamics of carbon (C) mineralization and stabilization was investigated in a sandy soil amended with three sole biochar (0, 20 or 40 t ha?1) or manure (0, 13 or 26 t ha?1) and four combined biochar-manure levels (20 or 40 t ha?1 biochar plus 13 or 26 t ha?1 manure) with or without N fertilizer (0 or 90 kg ha?1) and CO2-C evolution measured over 54-d incubation period. Biochar application, solely or combined with manure resulted in lower applied C mineralized (ACM), indicating C sequestration in the soils. Negative attributable effect (AE) of co-application of biochar and manure on C mineralization was observed relative to the sole treatments. Both ACM and AE were negatively correlated with C/N ratio and mineral N content of the soil-mixtures (r ≥ – 0.573; p ≤ 0.01), indicating microbial N limitation. The double first-order exponential model described CO2-C efflux very well and indicated that ≥94% of C applied was apportioned to stable C pools with slower mineralization rate constant and longer half-life. Cumulative C mineralized and modeled C pools were positively correlated with each other (r ≥ 0.853; p ≤ 0.001) and with readily oxidizable C of soil-amendment mixtures (r ≥ 0.861; p ≤ 0.001). The results suggested that co-application of biochar and manure can promote initial rapid mineralization to release plant nutrients but sequester larger amounts of applied C in refractive C pool, resulting in larger C sequestration in sandy soils.  相似文献   
959.
Abstract

Lead is being added to the environment in automotive exhausts and as an industrial pollutant. To understand its fate in the environment, it is necessary that factors affecting the capacity of soils to sorb Fb be determined.

The capacity of soils to sorb Fb from aqueous solutions vas measured for selected Illinois soils via column leaching experiments and adsorption isotherms. A regression equation was determined that predicted the capacity of a soil to sorb Fb based on its C.E.C., pH and soluble F level. Results of the regression analysis indicated that soil properties associated with increasing C.E.C., i.e. higher organic matter content, higher surface area, and higher clay content have a greater effect on Fb sorption than soil pH, and that soil pH has a greater effect than soluble P.  相似文献   
960.
ABSTRACT

The specific mechanism by which nitrogen application affects nodulation and nitrogen fixation in legume crops remains uncertain. To further study the effects of nitrogen application on soybean nodulation and nitrogen accumulation, three consecutive tests were performed during the VC-V4, V4-R1 (10 days), and R1-R2 (10 days) growth periods of soybean. In a dual-root soybean system, seedlings on one side were watered with a nutrient solution containing NH4+ or NO3? as the N source (N+ side), and those on the other side were watered with a nitrogen-free nutrient solution (N- side). During the VC-R2 period, on the N+ side, high nitrogen treatment inhibited nodule growth and nitrogenase activity (EC 1.18.6.1), and the inhibition was significantly increased with increasing high nitrogen supply time (10 days, 20 days). When the high nitrogen treatment time reached 20 days, the specific nitrogenase activity (C2H4 μmol?1 g?1 nodule dry mass h?1) was similar to that in the low nitrogen treatment, indicating that the nitrogen fixation capacity per gram of dry mass nodules was almost the same. Therefore, it is assumed that long-term high nitrogen treatment mainly reduces nitrogen fixation by reducing the nodule number. The effect of nitrogen concentration on the roots on the N+ side was greater than that on the N- side. Taken together, these results indicate that nitrogen application affects a contact-dependent local inhibition of root nodule growth, nitrogenase activity, and nitrogen accumulation. The whole plant systematically regulates specific nitrogenase activity, and high nitrogen inhibition is recoverable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号