首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5039篇
  免费   206篇
  国内免费   312篇
林业   338篇
农学   305篇
基础科学   171篇
  1388篇
综合类   1726篇
农作物   242篇
水产渔业   261篇
畜牧兽医   649篇
园艺   313篇
植物保护   164篇
  2024年   22篇
  2023年   50篇
  2022年   101篇
  2021年   115篇
  2020年   133篇
  2019年   154篇
  2018年   101篇
  2017年   198篇
  2016年   233篇
  2015年   197篇
  2014年   221篇
  2013年   322篇
  2012年   364篇
  2011年   416篇
  2010年   343篇
  2009年   325篇
  2008年   275篇
  2007年   315篇
  2006年   280篇
  2005年   194篇
  2004年   172篇
  2003年   137篇
  2002年   89篇
  2001年   95篇
  2000年   96篇
  1999年   77篇
  1998年   58篇
  1997年   74篇
  1996年   68篇
  1995年   58篇
  1994年   58篇
  1993年   31篇
  1992年   35篇
  1991年   32篇
  1990年   26篇
  1989年   26篇
  1988年   16篇
  1987年   9篇
  1986年   10篇
  1985年   11篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有5557条查询结果,搜索用时 506 毫秒
941.
以切花月季"戴安娜"为试验花材,以蔗糖、大蒜水提液和VC为原料,按照L9(34)正交设计配制瓶插液,通过测定瓶插寿命、花径变化率、鲜质量损失率和水分平衡值,研究不同瓶插液的保鲜效果.结果表明:在瓶插寿命指标上,20 g/L蔗糖+大蒜水提液(水提料液比1∶20(g/mL))+100 mg/L VC的配方组合表现最佳.极差分析表明,蔗糖是影响月季切花瓶插寿命的最主要因素,大蒜水提液次之.在鲜质量损失率指标上,10 g/L蔗糖+大蒜水提液(水提料液比1∶40(g/mL))+200 mg/L VC的配方组合表现最优.所有处理对月季切花的花径变化率和水分平衡值无显著影响.  相似文献   
942.
The measurement of soil carbon dioxide (CO2) respiration is a means to gauge biological soil fertility. Test methods for respiration employed in the laboratory vary somewhat, and to date the equipment and labor required have limited more widespread adoption of such methodologies. A new method to measure soil respiration was tested along with the traditional alkali trap and titration method. The new method involves the Solvita gel system, which was originally designed for CO2 respiration from compost but has been applied in this research to soils with treatments of increasing dairy manure compost. The objectives of this research are to (1) examine the relationship between the CO2 release after 1 day of incubation from soils amended with dairy manure compost that have been dried and rewetted as determined using the titration method and the Solvita gel system, and (2) compare water‐soluble organic nitrogen (N), as well as carbon (C), N, and phosphorus (P) mineralization after 28 days of incubation with 1‐day CO2 release from the titration method and Solvita gel system. One‐day CO2 from both titration and the Solvita gel system were highly correlated with cumulative 28‐day CO2 as well as the basal rate from 7–28 days of incubation. Both methods were also highly correlated with 28‐day N and P mineralization as well as the initial water‐extractable organic N and C concentration.

The data suggest that the Solvita gel system for soil CO2 analysis could be a simple and easily used method to quantify soil microbial activity and possibly provide an estimate of potential mineralizable N and P. Once standardized soil sampling and laboratory analysis protocols are established, the Solvita method could be easily adapted to commercial soil testing laboratories as an index of soil microbial activity.  相似文献   
943.
Conversion of a native ecosystem can impact the nature and dynamics of organic carbon (C) fractions. The goal of this study was to determine the effects of cultivation and monoculture wheat production on soil organic C and biological C fractions compared to a previously flooded native pasture in northern Turkey. Soil samples were collected from four randomly selected locations of each management system. Some soil chemical [pH, calcium carbonate (CaCO3), total nitrogen (N), and organic C], physical (sand, clay, and silt), and biological properties [microbial biomass carbon (MBC), mineralizable C, and mineralizable N] were measured. Conversion of pasture to cultivated land slightly increased soil pH, but CaCO3, total organic C (TOC), and N contents were significantly (P < 0.05) decreased with cultivation. Total organic C and N contents were more than three times less in cultivated soils compared to pasture. Microbial biomass C was significantly decreased (P < 0.05) with long-term cultivation, and the greater seasonal fluctuations were measured at the surface of both ecosystems. The greatest level of potentially mineralizable C was observed in the pasture rather than the cultivated soil, but the proportional distribution of mineralized C to TOC was greater in the cultivated soil. These results suggested that the long-term cultivation (15 years) of previously flooded native ecosystems increased C mineralization and resulted in 72% C loss at the surface soil. Cultivated soils have a greater potential to restore atmospheric carbon dioxide (CO2) if proper cultivation and management systems are used.  相似文献   
944.
In spite of the great effort that has been devoted to the search for a chemical laboratory index to predict nitrogen (N) mineralization capability of soils, the results have not yet been fully satisfactory. A continued effort is still needed to increase the knowledge of the sources of variation that influence potentially available soil N. The time of sampling has received little attention, taking into account its potential to influence N-mineralization patterns. In this work, soil samples from three different agrosystems, consisting of a double-crop sequence of small grains and maize, an intensively grazed pasture, and a rainfed olive orchard, were collected at different dates. Several chemical extractions were performed, and the results were correlated with N uptake by turnip (Brassica campestris, L.) grown in a pot experiment. Kjeldahl N was the chemical test that best correlated (R 2 = 0.621) with N uptake by turnip. Kjeldahl N showed great versatility relative to the origin of the soil samples. However, it was not very sensitive to the time of sampling. It did not detect changes occurring in the soil over a short period of time. Soil inorganic N showed the second highest coefficient of correlation (R 2 = 0.483) with N uptake by turnip. In contrast to that observed with Kjeldahl N, soil inorganic N appeared as an index that can vary greatly over the short term. The hot saline potassium chloride (KCl) extractions gave generally fair results. The poorest, however, were obtained with the ultraviolet absorption of extracts of 0.01 mol L?1 sodium bicarbonate (NaHCO3) measured at 250- and 260-nm wavelengths.  相似文献   
945.
Soil organic matter (SOM) is an essential ecosystem component whose dynamics are affected by soil management practices. To evaluate the impact of two agricultural systems (organic and conventional) on soil organic carbon (C) and nitrogen (N) stocks in a sandy soil, samples were collected from the Amway Nutrilite Brazil farm and from the Central Pivot Horticultural Farmers Association farm, both situated in the Chapada da Ibiapaba region, Ceará State, Brazil. The first area has a large‐scale Caribbean Cherry fruit production system under organic management, whereas the second represented a conventional soil cultivation condition, characterized by the use of chisel plow and disc plow, mineral fertilization, and herbicides application. Plots with and without green manure fertilization were compared in the organically cultivated systems by using soil samples collected in the rows and between the rows. Areas under native forest were also sampled to determine the steady‐state condition. Total organic C and N contents in the soil (SOC, TN) and in the humic substances were determined at the 0‐ to 5‐, 5‐ to 15‐, 15‐ to 30‐, and 30‐ to 50‐cm soil layers. In addition, oxidizible organic C fractions were measured to calculate the carbon management index (CMI). In general, total SOC levels were low, ranging from 2.5 to 12.6 g kg?1 in the whole soil profile among the organic systems. In the upper soil layer, SOC and TN stocks were greater in the rows in response to organic fertilization. The conventional system presented lower variation on the SOC contents throughout soil layers when compared to the native forest area, indicating the direct effect of plowing on the downward SOC distribution. The CMI data confirmed the reestablishment of SOM levels in the rows of the organic managed systems in relation to the reference area, whereas the reduction of the CMI in the conventional system suggests a decline in the soil quality and greater potential for increased C losses to the atmosphere.  相似文献   
946.
Recycling organic waste in agricultural soils is a valid solution. We performed short‐term experiments to investigate the fate of urban sludge and composts, in mine spoils, cultivated or uncultivated, and reclaimed soils located in Florence and Milan, Italy. The samples, either treated or untreated, were fractionated by density into light (<1.63 Mg m?3) and heavy (>1.63 Mg m?3) fractions. The fractions were analyzed for total carbon (C) and nitrogen (N) contents and for δ 13C and δ 15N isotopes, and they were characterized by 13C NMR spectroscopy. Treatment increased the heavy fraction. The addition of sludge in the Florence area acts in synergy with the cultivation, increasing the light fraction (LF). In the Milan area, the LF tends to be decomposed and apparently transformed into HF. The addition of amendments or cultivation enhances the decomposition with release of carbon dioxide. For future research, we suggest lengthening the time of the experiments to integrate climatic variations.  相似文献   
947.
A dichromate digestion and spectrophotometric procedure is proposed for estimating soil microbial biomass carbon (C) in association with fumigation–extraction. The recommended procedure uses a volume (1.6 ml) of 0.5 M potassium sulfate (K2SO4) soil extracts and oxidant solution (dichromate–sulfuric acid, 2.4 mL), mixed with a volume (4 mL) for digestion at 140 °C for 30 min. The digested solution is then directly read for absorbance at 350 nm using a spectrophotometer, and the C in the digested soil extracts is measured against glucose standards. The KEC (indicating the extractable part of microbial biomass C after fumigation) value is estimated as 0.33 for the proposed method. There are good correlations between soil microbial biomass C measured by the proposed method, the dichromate digestion titration, and oven oxidation by total organic C (TOC) analytical method. This method is a simple, rapid, and economical procedure associated with fumigation–extraction for biomass C analysis.  相似文献   
948.
Changes in soil properties and vegetable growth were quantified on a low-fertility tropical soil. Four treatments (two composts, urea, and control) were applied to an Oxisol (Rhodic Haplustox, Wahiawa series) in a field on Oahu, Hawaii. Chinese cabbage (Brassica rapa, Chinensis group) and eggplant (Solanum melongena) were grown sequentially as test crops. Soil quality as measured by hot-water-soluble carbon, dehydrogenase activity, and cation exchange capacity (CEC) increased by compost amendments. Total organic carbon or carbon dioxide (CO2) respiration rate did not correlate with the soil amendments. Nitrogen (N) nutrition was the main factor that improved growth and carotenoid content in cabbage. The urea treatment promoted better growth in cabbage, whereas good-quality compost, made of grass clippings/tree trimmings, lime, and rock phosphate yielded better growth in eggplant, suggesting organic N requires time to mineralize and to be available to crops.  相似文献   
949.
We studied quantitative and qualitative changes in soil organic matter (SOM) due to different land uses (reference woodland versus cultivated) on six soils from Tanzania (Mkindo and Mafiga), Zimbabwe (Domboshawa and Chickwaka), and South Africa (Hertzog and Guquka). Structural characteristics of the humic acids (HAs) were measured by Curie-point pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) and solid-state 13C nuclear magnetic resonance (CPMAS 13C NMR) spectroscopy. Significant changes in concentration and composition of SOM were observed between land uses. Losses of organic carbon after cultivation ranged from 35% to 50%. Virgin soils showed large proportions of colloidal humus fractions: humic acids (HAs) and fulvic acids (FAs) but negligible amounts of not-yet decomposed organic residues. The change in land use produced a contrasting effect on the composition of the HAs: a noteworthy “alkyl enhancement” in Mkindo soil and “alkyl depletion” in Chikwaka and to a lesser extent in Domwoshawa. The remaining soils displayed only minor alterations.  相似文献   
950.
Soil, crop, and fertilizer management practices may affect quality of organic carbon (C) and nitrogen (N) in soil. A long-term field experiment (growing barley, wheat, or canola)was conducted on a Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, to determine the influence of 19 years (1980 to 1998) of tillage [zero tillage (ZT) and conventional tillage (CT)], straw management [straw removed (SRem) and straw retained (SRet)], and N fertilizer rate (0, 50, and 100 kg N ha?1 in SRet and 0 kg N ha?1 in SRem plots) on macro-organic matter C (MOM-C) and N (MOM-N), microbial biomass C (MB-C), and mineralizable C (Cmin) and N (Nmin) in the 0- to 7.5-cm and 7.5- to 15-cm soil layers. Treatments with N fertilizer and SRet generally had a greater mass of MOM-C (by 201 kg C ha?1 with 100 kg N ha?1 rate and by 254 kg C ha?1 with SRet), MOM-N (by 12.4 kg N ha?1 with 100 kg N ha?1 rate and by 8.0 kg N ha?1 with SRet), Cmin(by 146 kg C ha?1 with 100 kg N ha?1 rate and by 44 kg C ha?1 with SRet), and Nmin(by 7.9 kg N ha?1 with 100 kg N ha?1 rate and by 9.0 kg N ha?1 with SRet)in soil than the corresponding zero-N and SRem treatments. Tillage, straw, and N fertilizer had no consistent effect on MB-C in soil. Correlations between these dynamic soil organic C or N fractions were strong and significant in most cases, except for MB-C, which had no significant correlation with MOM-C and MOM-N. Linear regressions between crop residue C input and mass of MOM-C, MOM-N, Cmin, and Nmin in soil were significant, but it was not significant for MB-C. The effects of management practices on dynamic soil organic C and N fractions were more pronounced in the 0- to 7.5-cm surface soil layer than in the 7.5- to 15-cm subsoil layer. In conclusion, the findings suggest that application of N fertilizer and retention of straw would improve soil quality by increasing macro-organic matter and N-supplying power of soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号