In the design of wood-based, enhanced-denitrification bioreactors to treat nitrate in agricultural drainage, the consideration of the highly variable flow rates and nitrate concentrations inherent to many drainage systems is important. For optimized mitigation of these nitrate loads, it may be best to contain drainage water prior to treatment in order to facilitate longer, more constant retention times rather than to allow cycles of flushing and dry periods in the denitrification bioreactor. Simulated containment prior to bioreactor treatment compared to passing drainage directly through a bioreactor was investigated with the use of six pilot-scale denitrification bioreactors constructed with plywood and filled with Pinus radiata woodchips at Massey University No. 4 Dairy Farm (Palmerston North, New Zealand). Initial bromide tracer tests were followed with a series of five simulated drainage events each at successively declining inflow nitrate concentrations. During each drainage event, three pilot bioreactors received a simulated hydrograph lasting 1.5 days (Non-Containment treatment) and three pilot bioreactors received the same total drainage volume treated over 4 days at a constant flow rate (i.e. constant retention time; Containment treatment). Results showed significantly different total mass removal efficiencies of 14.0% vs. 36.9% and significantly different removal rates of 2.1 g N m−3 day−1 vs. 6.7 g N m−3 day−1 for the Non-Containment and Containment treatments, respectively, which indicated that treating drainage at constant retention times provided more optimized nitrate removal. While this work was done to evaluate treatment under New Zealand drainage conditions, it also provides valuable information for optimizing agricultural drainage denitrification bioreactor performance in general. 相似文献
This report describes nitrate poisoning observed in thoroughbred mares. Nine horses died at a farm in Bursa, Turkey, between February and April of 2008. Five of them were pregnant. Clinical findings developed over a short period and included severe abdominal pain, limited response to analgesics and antispasmodics, diarrhea, shallow and rapid breathing, tachycardia, blue-brown discoloration of the mucosal membranes, tremors, ataxia, convulsions before death, and abortion in the pregnant mares. The main postmortem finding was chocolate brown–colored blood as well as congestion and inflammation of the intra-abdominal organs. Uterine rupture, colonic ruptures, and torsio uteri were seen in the pregnant mares. Stomach and intestinal ruptures were seen in four nonpregnant mares. High nitrate concentrations were determined in some grass and alfalfa samples used to feed the animals. Nitrate poisoning is considered to be very rare in horses, but, in this case, the clinical symptoms, postmortem findings, and nitrate levels in the collected samples supported nitrate and nitrite poisoning as the cause of deaths. 相似文献
Summary The use of N and P by mixed and by sole cropping (crop rotation) of maize and cowpeas were compared in a field experiment on an Alfisol at the Nyankpala Agricultural Experiment Station in the northern Guinea Savanna of Ghana, using two levels of N (0 and 80 kg N ha-1 year-1 as urea) and P application (0 and 60 kg P ha-1 year-1 as Volta phosphate rock). Maize grain yields were significantly reduced in the mixed cropping system. This yield difference became smaller with the application of N and P fertilizer. The N and P concentrations in maize ear leaves at silking indicated that a deficiency in N and P contributed to the maize yield depression in mixed cropping. Competition for soil and fertilizer N between maize and cowpeas was suggested by: (1) A similarity in total N uptake between the two cropping systems; (2) efficient use of soil nitrate by the cowpeas; and (3) low N2 fixation by the cowpeas, calculated with the aid of an extended-difference method. In general, N2 fixation was low, with the highest values in the sole cropping (53 kg ha-1) and a substantial reduction in the mixed cropping system. The application of N fertilizer further reduced N2 fixation. This was substantiated by nodule counts. The lower N2 fixation in the mixed cropping system was only partly explained by the lower density of cowpeas in this system. In addition, dry spells during the cropping season and shading by the maize component could have reduced the nodulation efficiency. No N transfer from the legume/rhizobium to the non-legume crop was observed. Impaired P nutrition in the mixed compared with the sole-cropped maize might have been due to less P mobility in the soil. This was indicated by lower soil moisture contents in the topsoil under mixed cropping, especially during the dry year of 1986. The results show that mixed cropping of maize and cowpeas did not lead to improved use of soil and fertilizer N and P or to an enhanced N2 fixation. On the contrary, an annual rotation of maize and cowpeas was clearly superior. 相似文献
Nitrate reductase activity (NRA) was studied in pea, a C3 plant, and sorghum, a C4 plant, at various stages of growth and development. Influence of moisture stress and nitrogen application was also observed since these factors have profound influence on growth and development.
In pea, NRA was maximum at pod maturity stage and minimum at flowering stage. In sorghum plant there was gradual increase in NRA upto grain formation followed by a fall in activity at maturity.
Nitrogen treatment as nitrate and ammonia significantly increased nitrate reductase activity over control in both pea and sorghum. Treatment with potassium nitrate was found to stimulate more NRA in pea than with ammonium sulphate. In sorghum, both forms of nitrogen did not differ much in their influence on NRA.
Influence of moisture stress in reducing NRA was more clear in sorghum, a C4 plant than in pea, a C3 plant. In general, control plants recorded low NRA in both the crops when compared to nitrogen treated plants except at pod formation stage in pea. 相似文献
Until recently, ‘land use’ was regarded as a single function: in rural areas of the UK this simply meant ‘farming’ or, in the uplands, ‘forestry’. However, there is now growing recognition of the multiple use of land, and farming or forestry must compete with other functions, in particular water supply. Links between hydrological pathways and stream water quality are described as a context for understanding the transport of pollutants to the river system. The concept of landscape sensitivity is then described and applied to the topics of soil erosion and nitrate leaching. Based on these analyses, guidelines for integrated management of sensitive catchment systems are proposed. 相似文献
Summary The influence of 28 nitrification inhibitors on denitrification of nitrate in soil was studied by determining the effects of different amounts of each inhibitor on the amounts of nitrate lost and the amounts of nitrite, N2O and N2 produced when soil samples were incubated anaerobically after treatment with nitrate or with nitrate and mannitol. The inhibitors used included nitrapyrin (N-Serve), etridiazole (Dwell), potassium azide, 2-amino-4-chloro-6-methylpyrimidine (AM), sulfathiazole (ST), 4-amino-1,2,4-triazole(ATC),2,4-diamino-6-trichloromethyl-s-triazine (CL-1580), potassium ethylxanthate, guanylthiourea (ASU), 4-nitrobenzotrichloride, 4-mesylbenzotrichloride, sodium thiocarbonate (STC), phenylmercuric acetate (PMA), and dicyandiamide (DCD).Only one of the nitrification inhibitors studied (potassium azide) retarded denitrification when applied at the rate of 10 g g–1 soil, and only two (potassium azide and 2,4-diamino-6-trichloromethyl-s-triazine) inhibited denitrification when applied at the rate of 50 g g–1 soil. The other inhibitors either had no appreciable effect on denitrification, or enhanced denitrification, when applied at the rate of 10 or 50 g g–1 soil, enhancement being most marked with 3-mercapto-1,2,4-triazole. Seven of the inhibitors (potassium azide, sulfathiazole, potassium ethylxanthate, sodium isopropylxanthate, 4-nitrobenzotrichloride, sodium thiocarbonate, and phenylmercuric acetate) retarded denitrification when applied at the rate of 50 g g–1 soil to soil that had been amended with mannitol to promote microbial activity.Reports that nitrapyrin (N-Serve) and etridiazole (Dwell) inhibit denitrification when applied at rates as low as 0.5 g g–1 soil could not be confirmed. No inhibition of denitrification was observed when these compounds were applied at the rate of 10 g g–1 soil, and enhancement of denitrification was observed when they were applied at the rate of 50 or 100 g g–1 soil. 相似文献