首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8698篇
  免费   347篇
  国内免费   1667篇
林业   143篇
农学   421篇
基础科学   3697篇
  2463篇
综合类   2497篇
农作物   332篇
水产渔业   18篇
畜牧兽医   145篇
园艺   177篇
植物保护   819篇
  2024年   71篇
  2023年   189篇
  2022年   295篇
  2021年   334篇
  2020年   310篇
  2019年   425篇
  2018年   339篇
  2017年   472篇
  2016年   666篇
  2015年   434篇
  2014年   428篇
  2013年   542篇
  2012年   750篇
  2011年   692篇
  2010年   640篇
  2009年   547篇
  2008年   454篇
  2007年   474篇
  2006年   402篇
  2005年   415篇
  2004年   287篇
  2003年   277篇
  2002年   173篇
  2001年   175篇
  2000年   164篇
  1999年   132篇
  1998年   94篇
  1997年   98篇
  1996年   67篇
  1995年   57篇
  1994年   51篇
  1993年   71篇
  1992年   49篇
  1991年   41篇
  1990年   33篇
  1989年   22篇
  1988年   14篇
  1987年   17篇
  1986年   4篇
  1985年   4篇
  1983年   2篇
  1981年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
951.
为了定量研究由蒙脱土和聚丙烯酰胺制备而成的渗灌复合材料导水特性与其组分之间及土壤湿度的关系,该文利用混合高斯模型模拟求解渗灌复合材料的平衡导水率、材料组分比例及土壤湿度之间的关系。设置9组组分比例不同(蒙脱土与聚丙烯酰胺质量比5~25)的渗灌复合材料在8个土壤湿度(土壤质量含水率3%~17%)下进行建模,另外2组((蒙脱土与聚丙烯酰胺质量比8和18)不同的组分制备而成复合材料在2组不同土壤湿度(土壤质量含水率4%和14%)下进行验证。结果表明:建立的渗灌复合材料平衡导水率与材料组分的关系函数,相应模拟值与实测值之间的均方根误差(root mean squared error,RMSE)≤25.87 g/h,误差平方和(sum of squares of error,SSE)≤160,决定系数(coefficient of multiple determination,R2)≥0.8933,利用混合高斯模型模拟平衡导水率、材料组分关系函数的相关参数与土壤湿度之间的关系,相应模拟值与实测值之间的RMSE≤195 g/h,SSE≤98350,决定系数R2≥0.6868,说明利用混合高斯模型拟合渗灌复合材料的平衡导水率、材料组分比例及土壤湿度之间的关系函数具有很好的稳定性、可行性及精确性;经验证,平衡导水率、材料组分比例及土壤湿度关系函数的模拟值与实测值之间的最大相对误差为14.14%,表明用该函数模拟渗灌复合材料H-C-M之间关系的可靠性。该研究对于后续的渗灌材料的研制及应用具有指导意义。  相似文献   
952.
ABSTRACT

The objective is to determine the growth, yield and chemical characteristics of pearl millet irrigated with different levels of brackish water and organic matter in two cultivation cycles. The experimental design was randomized blocks in a 4 × 4 factorial arrangement, composed of 4 levels of brackish irrigation (25, 50, 75 and 100% evapotranspiration), 4 levels of organic matter (0, 15, 30 and 45 t ha?1) with 3 repetitions. Along two cultivation cycles, pearl millet crop was analyzed for: plant growth variables, fresh and dry mass production, water-use efficiency, and chemical composition. There was significant interaction between applied water levels and organic matter for lignin in the 2nd cut (P < .05). The number of leaves, number of dead leaves and fresh mass production were influenced by the isolated effect of brackish water levels in cut 1 (P < .05). In turn, fresh mass production, dry mass production, plant height, leaves length, panicle length, fresh mass production, crude protein and ether extract were influenced by the isolated effect of saline water levels in the 2nd cut (P < .05). Growth, biomass production and chemical composition variables in second cut are positively influenced by different brackish irrigation levels under low rainfall conditions.  相似文献   
953.
954.
太行山山前平原夏玉米优化灌溉制度研究   总被引:7,自引:0,他引:7  
5年田间试验研究不同气候年型下灌水次数、灌溉时间对夏玉米生育、产量和水分利用效率的影响结果表明 ,随生育期总耗水量的增加 ,夏玉米产量逐步提高 ,当耗水量增至一定程度时产量反而递减 ;而水分利用效率随耗水量的增加呈逐步递减趋势。并确定了夏玉米最优耗水量 ,建立了不同降水年型下夏玉米优化灌溉制度。  相似文献   
955.
Surface irrigation analysis and design require the knowledge of the variation of the cumulative infiltration water Z (L) (per unit area) into the soil as a function of the infiltration time t (T). The purpose of this study is to evaluate water infiltration and storage under surface irrigation in an alluvial clay soil cultivated with grape yield, and to determine if partially wetted furrow irrigation has more efficient water storage and infiltration than traditional border irrigation. The two irrigation components considered were wet (WT) and dry (DT) treatments, at which water applied when available soil water reached 65% and 50%, and the traditional border irrigation control. Empirical power form equations were obtained for measured advance and recession times along the furrow length during the irrigation stages of advance, storage, depletion and recession. The infiltration (cumulative depth, Z and rate, I) was functioned to opportunity time (to) in minute for WT and DT treatments as: ZWT = 0.528 to0.6, ZDT = 1.2 to0.501, IWT = 19 to−0.4, and IDT = 36 to−0.498. The irrigation efficiency and soil water distribution have been evaluated using linear distribution and relative schedule depth. Coefficient of variation (CV) was 5.2 and 9.5% for WT and DT under furrow irrigation system comparing with 7.8% in border, respectively. Water was deeply percolated as 11.88 and 19.2% for wet and dry furrow treatments, respectively, compared with 12.8% for control, with no deficit in the irrigated area. Partially wetted furrow irrigation had greater water-efficiency and grape yield than both dry furrow and traditional border irrigations, where application efficiency achieved as 88.1% for wet furrow irrigation that achieved high grape fruit yield (30.71 Mg/ha) and water use efficiency 11.9 kg/m3.  相似文献   
956.
This study compares the effects of different irrigation regimes on seed yield and oil yield quality and water productivity of sprinkler and drip irrigated sunflower (Helianthus annus L.) on silty-clay-loam soils in 2006 and 2007 in the Mediterranean region of Turkey. In sprinkler irrigation a line-source system was used in order to create gradually varying irrigation levels. Irrigation regimes consisted of full irrigation (I1) and three deficit irrigation treatments (I2, I3 and I4), and rain-fed treatment (I5). In the drip system, irrigation regimes included full irrigation (FI-100), three deficit irrigation treatments (DI-25, DI-50, DI-75), partial root zone drying (PRD-50) and rain-fed treatment (RF). Irrigations were scheduled at weekly intervals both in sprinkler and drip irrigation, based on soil water depletion within a 0.90 m root zone in FI-100 and I1 plots. Irrigation treatments influenced significantly (P < 0.01) sunflower seed and oil yields, and oil quality both with sprinkler and drip systems. Seed yields decreased with increasing water stress levels under drip and sprinkler irrigation in both experimental years. Seed yield response to irrigation varied considerably due to differences in soil water contents and spring rainfall distribution in the experimental years. Although PRD-50 received about 36% less irrigation water as compared to FI-100, sunflower yield was reduced by an average of 15%. PRD-50 produced greater seed and oil yields than DI-50 in the drip irrigation system. Yield reduction was mainly due to less number of seeds per head and lower seed mass. Soil water deficits significantly reduced crop evapotranspiration (ET), which mainly depends on irrigation amounts. Significant linear relationships (R2 = 0.96) between ET and oil yield (Y) were obtained in each season. The seed yield response factors (kyseed) were 1.24 and 0.86 for the sprinkler and 1.19 and 1.06 for the drip system in 2006 and 2007, respectively. The oil yield response factor (kyoil) for sunflower was found to be 1.08 and 1.49 for both growing seasons for the sprinkler and 1.36 and 1.25 for the drip systems, respectively. Oil content decreased with decreasing irrigation amount. Consistently greater values of oil content were obtained from the full irrigation treatment plots. The saturated (palmitic and stearic acid) and unsaturated (oleic and linoleic acid) fatty acid contents were significantly affected by water stress. Water stress caused an increase in oleic acid with a decrease in linoleic acid contents. The palmitic and stearic acid concentrations decreased under drought conditions. Water productivity (WP) values were significantly affected by irrigation amounts and ranged from 0.40 to 0.71 kg m−3 in 2006, and from 0.69 to 0.91 kg m−3 in 2007. The PRD-50 treatment resulted in the greatest WP (1.0 kg m−3) and irrigation water productivity (IWP) (1.4 kg m−3) in both growing seasons. The results revealed that under water scarcity situation, PRD-50 in drip and I2 in sprinkler system provide acceptable irrigation strategies to increase sunflower yield and quality.  相似文献   
957.
Although spate irrigation systems are risk-prone, they can be an important component for livelihood security in semi-arid areas. Spate uses water (flood water), which upstream users often do not require, as rainfall during these periods is more than sufficient. The use of this flood water for spate irrigation is therefore a good opportunity to convert water with a low opportunity cost to high value water. As more rivers are closing, due to socio-economic and climate changes, spate irrigation may become increasingly relevant in semi-arid areas. Spate irrigation systems pose institutional and technical challenges: collective action is challenged by complex upstream-downstream interactions between users within the system, and the high labour demands for regular reconstruction of temporary diversion weirs and intake structures. This paper describes a spate irrigation system in Makanya village, Tanzania that emerged in response to increased upstream water use. We use three of the four dimensions (hydrological, hydraulic and sociological) of spate irrigation proposed by Van Steenbergen (1997) to assess the Makanya spate irrigation system. The Makanya spate irrigation system has an organisational structure that is similar to the canal irrigation (furrow) committees located upstream, and effectively deals with the institutional demands of managing water in spate irrigation systems. Water allocation is reminiscent to the water sharing arrangements existing in the full irrigation system, which previously was in place at the site and in the high- and midlands of the Makanya catchment and therefore set this system apart from the traditional spate irrigation practice elsewhere. Technically, a major challenge is the reconstruction of the head works after each flood. Another aspect is the changes in the river bed. Flash floods carry sediments that deposit on the fields, raising the elevation of the irrigated land every year and making it increasingly difficult for the river water to enter the plots. Improving system efficiency through modernisation of the diversion and distribution structures in this case is not feasible due to the huge amounts of sediments delivered to the system each year. Instead investments in conjunctive use of groundwater could be the solution because it involves a relatively small intervention, minimises the physical disturbance of the system, and therefore is likely to respect the existing locally developed water management arrangements.  相似文献   
958.
以中长绒陆地棉新陆中9号为材料,在新疆库车县进行了地面灌条件下水肥因素对新路中9号产量影响的田间试验。研究表明,在地面灌条件下水肥对中长绒棉都具有增产效果,单株结铃数与产量呈线性正相关,过多的水肥投入并不有利于棉花增产,合理肥料投入有利于发挥灌溉的增产作用。灌水量、施肥量与产量藕合关系的多元回归方程是为:Y=-1453.04 1.32703I 5.12236F-0.000211I2-0.005032F2-0.000263I*F。新陆中9号获得最高产量1568kg/hm2时全生育期中合理施肥量和灌水量分别434kg/hm2(其中N235kg/hm2、P2O5143kg/hm2、K2O56kg/hm2)和2879m3/hm2。  相似文献   
959.
研究了田间原位条件下,棉田滴灌不同施氮量下氮肥在土壤中的空间分布与作物吸收后残留规律。结果表明硝酸盐在水平方向和垂直方向具有明显的空间变异。同一氮肥用量下,以滴头为中心,硝酸盐在水平方向分布顺序为0 cm<10 cm<20 cm<40 cm<30 cm,在水平方向上硝酸盐随水移动且可以扩散到离湿润锋后部,垂直方向硝酸盐变化顺序为0-20 cm>20-40 cm>40-60 cm,为浅层累积型。无论水平方向还是垂直方向,氮肥用量对硝酸盐分布均有显著性影响。收获后,残留硝酸盐分布在点源水平距离5-40 cm,垂直距离0-60 cm土体内,残留硝酸盐累积量随氮肥用量的增加而增加。这些结果说明土壤硝酸盐存在明显空间变异,施肥显著增加了其浓度和残留量,同时可能会淋洗出根层,造成养分利用率下降和环境污染。因此,适宜的氮肥用量是控制硝酸盐向深层移动和累积的主要措施。  相似文献   
960.
农业节水技术的研究现状与发展   总被引:10,自引:3,他引:10  
综述了国内外农业节水技术发展状况,提出综合农艺节水技术研究方向,同时介绍了天津市农业水资源现状。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号