首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8704篇
  免费   340篇
  国内免费   1683篇
林业   143篇
农学   421篇
基础科学   3699篇
  2468篇
综合类   2501篇
农作物   334篇
水产渔业   18篇
畜牧兽医   146篇
园艺   178篇
植物保护   819篇
  2024年   76篇
  2023年   189篇
  2022年   298篇
  2021年   337篇
  2020年   311篇
  2019年   425篇
  2018年   340篇
  2017年   472篇
  2016年   666篇
  2015年   435篇
  2014年   428篇
  2013年   542篇
  2012年   750篇
  2011年   692篇
  2010年   640篇
  2009年   547篇
  2008年   455篇
  2007年   474篇
  2006年   402篇
  2005年   415篇
  2004年   287篇
  2003年   277篇
  2002年   173篇
  2001年   175篇
  2000年   164篇
  1999年   132篇
  1998年   94篇
  1997年   98篇
  1996年   67篇
  1995年   57篇
  1994年   51篇
  1993年   71篇
  1992年   49篇
  1991年   41篇
  1990年   33篇
  1989年   22篇
  1988年   14篇
  1987年   17篇
  1986年   4篇
  1985年   4篇
  1983年   2篇
  1981年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
Surface irrigation analysis and design require the knowledge of the variation of the cumulative infiltration water Z (L) (per unit area) into the soil as a function of the infiltration time t (T). The purpose of this study is to evaluate water infiltration and storage under surface irrigation in an alluvial clay soil cultivated with grape yield, and to determine if partially wetted furrow irrigation has more efficient water storage and infiltration than traditional border irrigation. The two irrigation components considered were wet (WT) and dry (DT) treatments, at which water applied when available soil water reached 65% and 50%, and the traditional border irrigation control. Empirical power form equations were obtained for measured advance and recession times along the furrow length during the irrigation stages of advance, storage, depletion and recession. The infiltration (cumulative depth, Z and rate, I) was functioned to opportunity time (to) in minute for WT and DT treatments as: ZWT = 0.528 to0.6, ZDT = 1.2 to0.501, IWT = 19 to−0.4, and IDT = 36 to−0.498. The irrigation efficiency and soil water distribution have been evaluated using linear distribution and relative schedule depth. Coefficient of variation (CV) was 5.2 and 9.5% for WT and DT under furrow irrigation system comparing with 7.8% in border, respectively. Water was deeply percolated as 11.88 and 19.2% for wet and dry furrow treatments, respectively, compared with 12.8% for control, with no deficit in the irrigated area. Partially wetted furrow irrigation had greater water-efficiency and grape yield than both dry furrow and traditional border irrigations, where application efficiency achieved as 88.1% for wet furrow irrigation that achieved high grape fruit yield (30.71 Mg/ha) and water use efficiency 11.9 kg/m3.  相似文献   
912.
This study compares the effects of different irrigation regimes on seed yield and oil yield quality and water productivity of sprinkler and drip irrigated sunflower (Helianthus annus L.) on silty-clay-loam soils in 2006 and 2007 in the Mediterranean region of Turkey. In sprinkler irrigation a line-source system was used in order to create gradually varying irrigation levels. Irrigation regimes consisted of full irrigation (I1) and three deficit irrigation treatments (I2, I3 and I4), and rain-fed treatment (I5). In the drip system, irrigation regimes included full irrigation (FI-100), three deficit irrigation treatments (DI-25, DI-50, DI-75), partial root zone drying (PRD-50) and rain-fed treatment (RF). Irrigations were scheduled at weekly intervals both in sprinkler and drip irrigation, based on soil water depletion within a 0.90 m root zone in FI-100 and I1 plots. Irrigation treatments influenced significantly (P < 0.01) sunflower seed and oil yields, and oil quality both with sprinkler and drip systems. Seed yields decreased with increasing water stress levels under drip and sprinkler irrigation in both experimental years. Seed yield response to irrigation varied considerably due to differences in soil water contents and spring rainfall distribution in the experimental years. Although PRD-50 received about 36% less irrigation water as compared to FI-100, sunflower yield was reduced by an average of 15%. PRD-50 produced greater seed and oil yields than DI-50 in the drip irrigation system. Yield reduction was mainly due to less number of seeds per head and lower seed mass. Soil water deficits significantly reduced crop evapotranspiration (ET), which mainly depends on irrigation amounts. Significant linear relationships (R2 = 0.96) between ET and oil yield (Y) were obtained in each season. The seed yield response factors (kyseed) were 1.24 and 0.86 for the sprinkler and 1.19 and 1.06 for the drip system in 2006 and 2007, respectively. The oil yield response factor (kyoil) for sunflower was found to be 1.08 and 1.49 for both growing seasons for the sprinkler and 1.36 and 1.25 for the drip systems, respectively. Oil content decreased with decreasing irrigation amount. Consistently greater values of oil content were obtained from the full irrigation treatment plots. The saturated (palmitic and stearic acid) and unsaturated (oleic and linoleic acid) fatty acid contents were significantly affected by water stress. Water stress caused an increase in oleic acid with a decrease in linoleic acid contents. The palmitic and stearic acid concentrations decreased under drought conditions. Water productivity (WP) values were significantly affected by irrigation amounts and ranged from 0.40 to 0.71 kg m−3 in 2006, and from 0.69 to 0.91 kg m−3 in 2007. The PRD-50 treatment resulted in the greatest WP (1.0 kg m−3) and irrigation water productivity (IWP) (1.4 kg m−3) in both growing seasons. The results revealed that under water scarcity situation, PRD-50 in drip and I2 in sprinkler system provide acceptable irrigation strategies to increase sunflower yield and quality.  相似文献   
913.
Although spate irrigation systems are risk-prone, they can be an important component for livelihood security in semi-arid areas. Spate uses water (flood water), which upstream users often do not require, as rainfall during these periods is more than sufficient. The use of this flood water for spate irrigation is therefore a good opportunity to convert water with a low opportunity cost to high value water. As more rivers are closing, due to socio-economic and climate changes, spate irrigation may become increasingly relevant in semi-arid areas. Spate irrigation systems pose institutional and technical challenges: collective action is challenged by complex upstream-downstream interactions between users within the system, and the high labour demands for regular reconstruction of temporary diversion weirs and intake structures. This paper describes a spate irrigation system in Makanya village, Tanzania that emerged in response to increased upstream water use. We use three of the four dimensions (hydrological, hydraulic and sociological) of spate irrigation proposed by Van Steenbergen (1997) to assess the Makanya spate irrigation system. The Makanya spate irrigation system has an organisational structure that is similar to the canal irrigation (furrow) committees located upstream, and effectively deals with the institutional demands of managing water in spate irrigation systems. Water allocation is reminiscent to the water sharing arrangements existing in the full irrigation system, which previously was in place at the site and in the high- and midlands of the Makanya catchment and therefore set this system apart from the traditional spate irrigation practice elsewhere. Technically, a major challenge is the reconstruction of the head works after each flood. Another aspect is the changes in the river bed. Flash floods carry sediments that deposit on the fields, raising the elevation of the irrigated land every year and making it increasingly difficult for the river water to enter the plots. Improving system efficiency through modernisation of the diversion and distribution structures in this case is not feasible due to the huge amounts of sediments delivered to the system each year. Instead investments in conjunctive use of groundwater could be the solution because it involves a relatively small intervention, minimises the physical disturbance of the system, and therefore is likely to respect the existing locally developed water management arrangements.  相似文献   
914.
以中长绒陆地棉新陆中9号为材料,在新疆库车县进行了地面灌条件下水肥因素对新路中9号产量影响的田间试验。研究表明,在地面灌条件下水肥对中长绒棉都具有增产效果,单株结铃数与产量呈线性正相关,过多的水肥投入并不有利于棉花增产,合理肥料投入有利于发挥灌溉的增产作用。灌水量、施肥量与产量藕合关系的多元回归方程是为:Y=-1453.04 1.32703I 5.12236F-0.000211I2-0.005032F2-0.000263I*F。新陆中9号获得最高产量1568kg/hm2时全生育期中合理施肥量和灌水量分别434kg/hm2(其中N235kg/hm2、P2O5143kg/hm2、K2O56kg/hm2)和2879m3/hm2。  相似文献   
915.
研究了田间原位条件下,棉田滴灌不同施氮量下氮肥在土壤中的空间分布与作物吸收后残留规律。结果表明硝酸盐在水平方向和垂直方向具有明显的空间变异。同一氮肥用量下,以滴头为中心,硝酸盐在水平方向分布顺序为0 cm<10 cm<20 cm<40 cm<30 cm,在水平方向上硝酸盐随水移动且可以扩散到离湿润锋后部,垂直方向硝酸盐变化顺序为0-20 cm>20-40 cm>40-60 cm,为浅层累积型。无论水平方向还是垂直方向,氮肥用量对硝酸盐分布均有显著性影响。收获后,残留硝酸盐分布在点源水平距离5-40 cm,垂直距离0-60 cm土体内,残留硝酸盐累积量随氮肥用量的增加而增加。这些结果说明土壤硝酸盐存在明显空间变异,施肥显著增加了其浓度和残留量,同时可能会淋洗出根层,造成养分利用率下降和环境污染。因此,适宜的氮肥用量是控制硝酸盐向深层移动和累积的主要措施。  相似文献   
916.
农业节水技术的研究现状与发展   总被引:10,自引:3,他引:10  
综述了国内外农业节水技术发展状况,提出综合农艺节水技术研究方向,同时介绍了天津市农业水资源现状。  相似文献   
917.
灰色等维新息模型在灌溉用水量预测中的应用研究   总被引:7,自引:0,他引:7  
在分析现有灌溉用水量预测方法的基础上,运用灰色系统理论建立了等维新息模型GM(1,1),并用同步残差等维新息模型进行修正。结果表明,该模型能够及时更新数据信息,使模型保持良好的适应性,有效提高了预测精度。最后应用该模型对宝鸡峡灌区灌溉用水量进行预测检验,结果表明模型具有较高的预测精度。  相似文献   
918.
生活污水灌溉对茄子生长效应的影响   总被引:13,自引:0,他引:13  
对生活污水经过处理后以黄河水作对照进行茄子灌溉试验,试验结果表明,生活污水灌溉可改善土壤结构,提高土壤肥力,使茄子总根数增加12 %,根长增长13 %,增产60 %,增加收入5.85万元/hm2,商品性也明显提高。  相似文献   
919.
东农42号大豆灌溉效果研究初报   总被引:1,自引:0,他引:1  
在1993年自然降水及温度条件下试验,东农42号大豆各产量性状对灌水处理反应敏感,不同处理间单株荚数、单株粒数和百粒重有极显著的差异,株高差异显著,产量亦有较显著的差异。最佳灌水处理(B处理)产量达5033.3kg/hm2。  相似文献   
920.
不同生育期咸水灌溉对砂培甜瓜产量和品质的影响   总被引:1,自引:0,他引:1  
采用二因素四水平随机区组设计,用不同质量浓度咸水在不同生育时期对温室砂培甜瓜‘优选早蜜’进行灌溉,研究其对甜瓜产量和品质的影响。结果表明,在不同生育时期3 g/L咸水处理对甜瓜产量均无显著影响,在开花坐果期和伸蔓期至果实成熟期,5,7,9 g/L咸水处理的单果重均极显著低于对照,而在果实发育期各咸水处理的单果重均显著低于对照;在甜瓜果实发育期以前,不同浓度咸水处理使甜瓜品质稍有降低,而后期处理则能提高甜瓜果实的品质,其中可溶性蛋白含量的变化不大;伸蔓期至果实成熟期持续咸水处理对甜瓜营养生长有明显的抑制作用,其中对株高的影响表现得尤为突出。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号