首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   13篇
  国内免费   16篇
林业   20篇
农学   6篇
基础科学   15篇
  122篇
综合类   51篇
农作物   10篇
水产渔业   1篇
畜牧兽医   6篇
园艺   4篇
植物保护   2篇
  2024年   3篇
  2023年   2篇
  2022年   1篇
  2021年   11篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   7篇
  2014年   7篇
  2013年   17篇
  2012年   17篇
  2011年   19篇
  2010年   10篇
  2009年   13篇
  2008年   18篇
  2007年   11篇
  2006年   17篇
  2005年   15篇
  2004年   4篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  2000年   9篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1989年   3篇
  1988年   1篇
排序方式: 共有237条查询结果,搜索用时 405 毫秒
81.
盐地碱蓬生长对滨海重盐碱地的改土效应   总被引:3,自引:0,他引:3  
盐地碱蓬是滨海盐碱地生态系统群落演替中的先锋物种,也是植被建设的重要植物。为探究盐地碱蓬对滨海盐碱地的改土效应以及作用机制,通过滨海平原盐碱地原生盐地碱蓬群落土壤调查,结合室内土柱种植试验,研究了盐地碱蓬生长对滨海盐土土壤结构、土壤水分入渗特征及土壤盐分分布的影响,比较了盐地碱蓬通过植株吸收盐分和通过改善土壤结构促进盐分淋洗对滨海盐碱地降盐、改土的效果。结果表明:1)盐地碱蓬生长对滨海盐土土壤结构有明显的改善效果,野外生长盐地碱蓬的0~20cm土层土壤容重显著低于裸地,而土壤孔隙度显著高于裸地地块;室内土柱种植盐地碱蓬降低了各层土壤容重,平均降低6.16%;增加了各层土壤孔隙度,增加1.59%~5.15%。2)盐地碱蓬生长显著提升了滨海盐土土壤水分入渗性能。野外入渗试验结果显示,相同入渗时间内,生长盐地碱蓬的土壤累积入渗量、初始入渗率及稳定入渗率分别是裸地的3.6倍、2.5倍和3.0倍。室内土柱模拟试验结果显示,盐地碱蓬处理土壤的初始入渗率为0.08mm·min?1,是裸地处理的2.6倍;稳定入渗率为0.03mm·min?1,是裸地处理的3.0倍。3)盐地碱蓬的生长明显降低了土壤含盐量,盐地碱蓬收获后,野外调查试验和室内土柱试验中裸地处理0~40cm土层土壤含盐量分别降低2.67%和12.98%,而盐地碱蓬处理分别降低12.08%和49.28%。野外调查和室内土柱试验中,盐地碱蓬植株移走的盐量分别占总脱盐量的5.60%和2.26%,淋洗脱盐量分别占总脱盐量的94.40%和97.74%。以上结果表明,滨海重盐碱地种植盐地碱蓬具有明显的降低土壤含盐量的作用,这种作用除植株吸收带走部分盐分外,更重要的是通过盐地碱蓬的生长改善了土壤结构、加速了土壤水分入渗、促进了土壤盐分的淋洗。  相似文献   
82.
草坪根系层基质和氮肥类型对氮淋失的影响   总被引:1,自引:1,他引:0  
为更好地了解高尔夫球场草坪施用氮肥对水环境的影响,在温室里模拟高尔夫果岭用PVC管建造4种基质类型的小型蒸渗仪播种建植匍匐翦股颖(Agrostis stolonifera L. cv. Penncross),出苗后施用Hoagland和Arnon营养液培育至成坪,成坪后选用速效氮尿素和控释肥丁异叉双缩脲进行氮肥类型处理,每两周施1.8 g·m-2N。结果表明:4种基质类型的草坪幼坪期都存在污染地下水的可能性,但随草坪的成熟而降低,其中改良沙基质的草坪可能性最小;速效氮肥处理的草坪氮的淋失显著高于缓释氮肥处理。综合比较,高尔夫果岭根系层采用改良沙基质、少量多次地施用缓释肥可以有效控制氮的淋失。  相似文献   
83.
利用纳米SiO_2改性ACQ防腐剂,以提高ACQ处理材的抗流失性。利用单因素法考察纳米SiO_2在ACQ溶液中的最佳分散条件,并考察改性ACQ处理材的抗流失性及其化学结构变化。结果表明:纳米SiO_2改性理想的工艺条件为:ACQ浓度为1.0%,纳米SiO_2质量为0.01 g,六偏磷酸钠/纳米SiO_2比例为15:1,超声时间为30 min,超声温度为20℃。经纳米SiO_2改性的ACQ处理材,其流失率明显下降,且从FTIR谱图中可见,纳米SiO_2改性处理是提高ACQ处理材中有效成分铜抗流失性的最主要原因。  相似文献   
84.
Chromusterts and Pellusterts located in India represent 20 % of the 257 million ha of Vertisols found worldwide. These soils are commonly associated with soils that exhibit vertick characteristics, such as Ustochrepts and Ustropepts, but that are too shallow (< 50 cm) to be classified as Vertisols; India has 20 million ha of such soils. Nitrogen is generally deficient in these soils, irrespective of their depth. N response of sorghum on the Vertisols is good even under rainfed conditions. Over a period of 5 years (1982, 83, 84, 85, and 87) the responses of sorghum to applied N on a deep Pellustert and a shallow vertic Ustochrept were compared and, with the use of labelled fertilizer, the fate of N was traced through the soil-plant system. It is clear from the results that, when weather conditions were favorable, response to applied N was excellent and losses were low, irrespective of soil depth. However, when periods of excessive rainfall occurred, the loss of native and applied N apparently increased rapidly, particularly in the shallow Ustochrept where rooting is largely limited to the top 50 cm. Losses of N from applied urea were up to threefold higher in the shallow Ustochrept than in the deep Pellustert; these losses, together with the rapid loss of applied NO3, suggest that leaching is the predominant cause of N loss. Nitrogen application rates should be adjusted on the basis of rainfall during the early part of the growing season. Due to the unpredictability of the rainfall pattern following fertilizer application, NO3 sources should be avoided and nitrogen split as frequently as possible on the shallow vertic Ustochrepts of the Indian semi-arid tropics.  相似文献   
85.
Maximization of crop yields when the salinity of irrigation water is high depends on providing plant transpiration needs and evaporative losses, as well as on maintaining minimum soil solution salinity through leaching. The effect of the amount of applied irrigation water was studied regarding transpiration, yields, and leaching fractions as a function of irrigation water salinity. Bell pepper (Capsicum annum L. vars. Celica and 7187) in protected growing environments in the Arava Valley of Israel was used as a case study crop to analyze water quantity–salinity interactions in a series of lysimeter, field and model simulation experiments. Leaching fraction was found to be highly influenced by plant feedback, as transpiration depended on root zone salinity. Increased application of saline irrigation water led to increased transpiration and yields. The higher the salinity level, the greater the relative benefit from increased leaching. The extent of leaching needed to maximize yields when irrigating with saline water may make such practice highly unsustainable.  相似文献   
86.
Tillage may influence nitrate losses from agricultural soils. Losses of nitrate were measured in drainflow at 60 cm depth and in combined surface runoff and interflow in the A horizon (=surface layer flow) on hydrologically sealed plots with a two-year comparison (1988–1990) of shallow-tine cultivation vs. mouldboard ploughing. Ploughing increased concentrations and loadings of nitrate in drainflow and surface layer flow, especially in the first year. After these two years the shallow-tined plots were ploughed to plant winter beans (Vicia faba L.), and nitrate in drainflow then increased over the next three winters, slightly exceeding that from the plots which had been ploughed throughout for winter cereals. The composition of the surface layer flow did not show this effect, however. Calculations of net winter mineralisation of soil organic nitrogen showed that shallow-tine cultivation may have decreased mineralisation slightly compared with ploughing in the first two years. These calculations did not indicate any increase in mineralisation for two winters after the minimally cultivated plots were ploughed in autumn 1990, probably because the soil was then very dry. This increase was apparently delayed until the fifth winter (1992/1993), which was much wetter than any since autumn 1990. In the previous eight years (1980–1988) half of the plots had been ploughed and half had been direct drilled. Averaged over the five winters 1988/1989–1992/1993, the five measures of nitrate loss in drainflow from plots previously direct drilled were 6–57% more than from plots previously ploughed, and winter mineralisation was 20% more, with no evidence of any decline in either with time. The nitrate produced by mineralisation of organic matter conserved by the eight years of direct drilling was mainly lost by leaching or denitrification; it was of little or no benefit to the crops. The results suggest that in the long term more nitrate is leached from land subject to periods of minimal or zero tillage and ploughing than from land ploughed every year.  相似文献   
87.
Six different vegetable crop residues were incorporated in the field and N mineralization from the residues and from an unamended plot was followed over 4 months by periodically monitoring mineral N contents of the soil. The crop residues were also fractionated according to a modified Stevenson chemical fractionation. Nitrogen mineralization parameters of the first order kinetic model N(t)=NA(1−ekt) were derived from the chemical fractionation data. The first order model was used in combination with a model describing the temperature dependence of N mineralization and a simple leaching model to predict N mineralization rates and nitrate redistribution after crop residue incorporation under field conditions. Comparison of predicted and measured mineral N contents in the upper soil layer (0–30 cm) before the start of leaching showed that the model was able to predict N mineralization from both soil organic matter and crop residues under field conditions. From the onset of leaching, mineral N contents were slightly overestimated in the upper layer and underestimated in the lower soil layers. Although the Burns leaching model underestimated the leaching rate, the general pattern of nitrate movement was simulated satisfactorily. Statistical analysis using the variance ratio test yielded small but significant F values, indicating that the model can still be improved. The modelling efficiency was rather high and the coefficient of residual mass very close to zero. Linear regression between measured and simulated nitrate contents over the whole profile (0–120 cm) for all samplings yielded Y=9.6+0.876X (r=0.94***) with all deviations smaller than 25 kg N ha−1. Total N mineralization ranged from 48 kg N ha−1 for the control plot to 136 kg N ha−1 for the plots with cauliflower residues and cumulative leaching losses from 26–66 kg N ha−1, with most of the mineral N left in the 60–120 cm layer. These results show that N losses by leaching in winter can be high when vegetable crop residues are incorporated, even when there is little mineral N in the soil at the time of incorporation.  相似文献   
88.
应用由水基成膜法研制的4种有机-无机复合材料胶结包膜肥料(B2、PS、F2、F2F)进行土柱淋洗试验,研究其在不同土壤类型条件下的钾素溶出规律。结果表明:4种胶结包膜肥料在48d内钾素累积溶出率为44.02%(红壤)>34.59%(褐土)>25.92%(黑土)。同一种胶结包膜肥料在红壤、褐土和黑土中的钾素瞬时溶出率峰值出现时间一致(以B2为例);钾素溶出峰值之前,瞬时溶出率在2~13 d内为红壤>褐土>黑土,钾素峰值溶出率为10.39%(红壤)>7.09%(褐土)>5.99%(黑土),而峰值过后,三土壤间瞬时溶出率差异不显著(P>0.05)。说明包膜肥料本身释放钾素的速率受不同质地的土壤影响较小,但其淋出量受土壤影响较大。  相似文献   
89.
本文通过采用自制土柱装置,进行新型硝化抑制剂对氮素迁移转化及其淋溶损失的试验,探讨其对氮素垂直迁移和淋溶损失的影响,以及硝化抑制剂自身的有效性。结果表明:在27 d内,新型硝化抑制剂能显著抑制土壤铵氧化过程的发生,显著提高20 cm以上表层土壤铵态氮含量,降低表层土壤硝态氮含量;深层土壤地下水硝态氮浓度显著低于未加硝化抑制剂的对照土壤地下水的浓度,明显降低硝态氮垂直迁移的淋溶损失;不同的硝化抑制剂对土壤地下水氮素的迁移转化影响存在着显著的不同。  相似文献   
90.
常智慧 《安徽农业科学》2009,37(3):1214-1217
在北京地区采用二次饱和D-最优设计,研究了氮磷耦合效应对新建果岭草坪磷淋溶的影响。结果表明:影响淋溶水中总磷浓度的关键因子是施磷量,其次是氮肥施用量。淋溶水中总磷浓度随着施磷量增加而增大,不同施肥条件下淋溶水中总磷浓度均在8月份达到最大值。从保护地表水的角度看,在北京的气候条件下,如果果岭草坪上月施磷量(P2O5)控制在2.4g/m^2以内,就不会发生磷淋溶污染地表水水环境。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号