首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2763篇
  免费   88篇
  国内免费   143篇
林业   516篇
农学   301篇
基础科学   141篇
  936篇
综合类   737篇
农作物   97篇
水产渔业   52篇
畜牧兽医   92篇
园艺   110篇
植物保护   12篇
  2024年   19篇
  2023年   33篇
  2022年   59篇
  2021年   39篇
  2020年   40篇
  2019年   56篇
  2018年   49篇
  2017年   87篇
  2016年   103篇
  2015年   127篇
  2014年   117篇
  2013年   151篇
  2012年   180篇
  2011年   291篇
  2010年   197篇
  2009年   218篇
  2008年   164篇
  2007年   197篇
  2006年   150篇
  2005年   126篇
  2004年   112篇
  2003年   100篇
  2002年   65篇
  2001年   35篇
  2000年   35篇
  1999年   30篇
  1998年   35篇
  1997年   28篇
  1996年   31篇
  1995年   21篇
  1994年   21篇
  1993年   15篇
  1992年   13篇
  1991年   15篇
  1990年   13篇
  1989年   8篇
  1988年   7篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有2994条查询结果,搜索用时 15 毫秒
991.
采用有限单元法分析了 12个典型的 T型矩形钢管混凝土受压节点及 T型矩形钢管受压节点 ,得到了节点的荷载 -位移曲线及变形规律 ,分析了钢材强度、腹杆宽度与弦杆宽度的比值诸因素对节点极限承载力和初始刚度的影响  相似文献   
992.
研究了6种碳源和6种氮源对烟草赤星病菌[Alternaria alternata(Fr)Keissler]菌丝生长和产孢量的影响。结果表明,不同的碳源和氮源对该病菌菌丝生长和产孢量均有显著影响。病菌在以淀粉为碳源的培养基上菌丝生长最快,乳糖次之;菌丝干重以果糖培养基上最大,乳糖、葡萄糖、麦芽糖、蔗糖、淀粉次之,无碳对照最低;产孢量以在麦芽糖为碳源的培养基上最高,乳糖次之,无碳对照最低。病菌在以蛋白胨为氮源的培养基上菌丝生长最快,菌丝干重最大,硝酸铵次之,脲最慢;产孢量以在蛋白胨为氮源的培养基上最高,硝酸铵、硫酸铵上次之,脲最低。脲和氯化铵对病菌生长和孢子形成均有抑制作用。  相似文献   
993.
对影响管材屈服强度的包申格效应试验分析   总被引:1,自引:0,他引:1  
吉玲康 《油气储运》2004,23(10):33-35
螺旋缝埋弧焊管在拉伸试样的制作时会产生与焊管成型过程中变形相反的塑性变形,从而引发包申格效应.通过对X65钢级板卷以及其制成钢管的同方向拉伸性能试验表明,板卷强度水平对包申格效应有着重要影响,并给出包申格效应值VBE大小的经验关系式,同时还讨论了板卷屈强比对包申格效应的影响.  相似文献   
994.
In the present paper, a variety of fiber reinforcements, for instance, stabilized OXI-PAN fibers, quasi-carbon fibers, commercial carbon fibers, and their woven fabric forms, have been utilized to fabricate pseudo-unidirectional (pseudo-UD) and 2-directional (2D) phenolic matrix composites using a compression molding method. Prior to fabricating quasi-carbon fiber/phenolic (QC/P) composites, stabilized OXI-PAN fibers and fabrics were heat-treated under low temperature carbonization processes to prepare quasi-carbon fibers and fabrics. The thermal conductivity and thermal expansion/contraction behavior of QC/P composites have been investigated and compared with those of carbon fiber/phenolic (C/P) and stabilized fiber/phenolic composites. Also, the chemical compositions of the fibers used have been characterized. The results suggest that use of proper quasi-carbonization process may control effectively not only the chemical compositions of resulting quasi-carbon fibers but also the thermal conductivity and thermal expansion behavior of quasi-carbon fibers/phenolic composites in the intermediate range between stabilized PAN fiber- and carbon fiber-reinforced phenolic composites.  相似文献   
995.
韩文炎  许允文 《茶叶科学》1993,13(2):101-108
采用大田和盆栽试验相结合的方法,通过调查测定茶树生育特性、多酚氧化酶和硝酸还原酶活性、碳氮代谢的变化等,研究了铜对茶树的生长和生理效应。结果表明,适宜的施铜量能促进茶树生长,特别是对新梢和吸收根具有明显的刺激作用,并能增强体内氧化还原酶促反应和碳氮合成代谢,从而提高产量,改善品质。但过量施铜,在叶面喷施时,新梢的萌发和生长受抑制;在土施时,吸收根数量明显减少。过量施铜还会引起酶活性的降低、碳氮代谢的方向发生变化等,从而导致茶叶产量和品质的下降。文中还对茶树铜的缺乏与过剩,铜与茶树抗逆性等问题进行了讨论。  相似文献   
996.
Net ecosystem carbon dioxide exchange was measured in two contrasting peatlands in northern Alberta, Canada using the eddy covariance technique during the growing season (May–October). Sphagnum spp. made up approximately 66% of the total LAI (1.52 m2 m−2) at the poor fen and the total N content of Sphagnum capitula was 7.8 mg g−1 at the peak of the growing season. In contrast, the dominant plant species at the extreme-rich fen site, the perennial sedge, Carex lasiocarpa, accounted for approximately 60% of the total LAI (1.09 m2 m−2), and had leaf total N content of 19.3 mg g−1 at peak biomass. In addition, the peak aboveground biomass was higher at the poor fen (230.9 g m−2) than at the extreme-rich fen (157.1 g m−2). Both sites had maximum daily rates of net CO2 uptake of approximately 5 μmol m−2 s−1, and typical nighttime rates of CO2 loss of approximately 2 μmol m−2 s−1 during the peak of the growing season. Calculations of maximum photosynthetic and respiratory capacity were consistently higher at the extreme-rich fen. The poor fen was a net sink for CO2 during 4 of the 6 months (peaking at 44 g C m−2 in July), while only slight net losses of CO2 (3 g C m−2) occurred in May and September. In contrast, the extreme-rich fen was calculated to be a significant net sink for CO2 only during 2 months of the growing season (peaking at 30 g C m−2 in August), while significant net losses of CO2 occurred in May (8 g C m−2) and in October (13 g C m−2). The plant species at the poor fen site were active earlier and later in the growing season, while it took longer for C. lasiocarpa to develop leaf tissue, and leaf senescence and reduction in photosynthetic activity occurred earlier in the fall at the extreme-rich fen. When integrated over the 6-month growing season, the poor fen was a net sink (90 g C m−2) that was three times larger than the extreme-rich fen (31 g C m−2). The ratio of cumulative total ecosystem respiration to gross primary production was 0.7 at the poor fen and 0.9 at the extreme-rich fen.  相似文献   
997.
In the central highlands of Mexico, mesquite (Prosopis laevigata) and huisache (Acacia schaffneri), N2-fixing trees or shrubs, dominate the vegetation and are currently used in a reforestation program to prevent erosion. We investigated how natural vegetation or cultivation of soil affected oxidation of CH4, and production of N2O. Soil was sampled under the canopy of mesquite (MES treatment) and huisache trees (HUI treatment), outside their canopy (OUT treatment) and from fields cultivated with maize (ARA treatment) at three different sites while production of CO2, and dynamics of CH4, N2O and inorganic N (NH4+, and NO3) were monitored in an aerobic incubation. The production of CO2 was 2.3 times higher and significantly greater in the OUT treatment, 3.0 times higher in the MES treatment and 4.0 times higher in the HUI treatment compared to the ARA treatment. There was no significant difference in oxidation of CH4 between the treatments, which ranged from 0.019 g CH4–C kg–1 day–1 for the HUI treatment to 0.033 CH4–C kg–1 day–1 for the MES treatment. The production of N2O was 30 g N2O–N kg–1 day–1 in the MES treatment and >8 times higher compared to the other treatments. The average concentration of NO3 was 2 times higher and significantly greater in the MES treatment than in the HUI treatment, 3 times greater than in the OUT treatment and 10 times greater than in the ARA treatment. It was found that cultivation of soil decreased soil organic matter content, C and N mineralization, but not oxidation of CH4 or production of N2O.  相似文献   
998.
ABSTRACT

Gas chromatography (GC) is a technique used to analyze substances/molecules (as chemical species) with a system composed of chromatograph, column, and detector. This study has the objective of reviewing the use of GC in monitoring greenhouse gases (GHG; carbon dioxide: CO2; methane: CH4; nitrous oxide: N2O) emission and O2 (oxygen) uptake in soil, demonstrating results from experiments around the world and alternative use of sensors to monitor these gases in soil. Our study shows that the correct column and detector depend on analyzing gas and the advantages and disadvantages of the column and the detector. The columns, packed and capillary, have been more used and are considered better options to analyze GHG emission and O2 uptake in soil science. Thermal conductivity detector (TCD), electron capture detector (ECD) and mass selective (MS) are great choice to monitor CO2 emission; flame ionization detector (FID) equipped with methanizer allows the detection of CO2 and CH4 emission; and ECD detects the amount of N2O emitted. Moreover, both, TCD and ECD, also can be used to detect O2 uptake. GC system is complex, and to identify of GHG emission and O2 uptake is necessary the use of column (packed or capillary) and may contain multiple detectors, i.e. three (TCD, ECD, and FID) or two detectors (FID and ECD). Field and laboratory study should be run to verify the efficacy of sensors to monitor GHG emission and O2 uptake as an alternative of GC system.  相似文献   
999.
Arbuscular mycorrhizal fungi (AMF) have multiple influences on ecosystem C cycling, but most research has focused on ecosystem C gains. We explore here the possibility of direct contributions of AMF to ecosystem C losses, namely via leaching of glomalin-related soil protein (GRSP). We tested the hypothesis that GRSP, an operationally defined SOM pool to which AMF contribute (especially as evidenced with monoclonal antibody MAb32B11-based detection), is mobile in soils and can be lost in leachate. For two New Zealand soils, we showed that only insignificant amounts of GRSP were lost: a maximum of 0.03% of MAb32B11-immunoreactive GRSP present in soils was lost during the week-long experiment, representing a minute fraction of total leachate dissolved organic carbon (0.06%). Our data showed that this pathway of C loss may be relatively unimportant in many soils. However, other indirect contributions of AMF to soil C losses remain yet to be explored.  相似文献   
1000.
In peatlands the reduced decomposition rate of plant litter is the fundamental mechanism making these peat-accumulating ecosystems effective carbon sinks. A better knowledge of litter decomposition and nutrient cycling is thus crucial to improve our predictions of the effects of anthropogenic perturbation on the capacity of peatlands to continue to behave as carbon sinks. We investigated patterns of plant litter decomposition and nutrient release along a minerotrophic-ombrotrophic gradient in a bog on the south-eastern Alps of Italy. We determined mass loss as well as P, N, K, and C release of seven vascular plant species and four moss species after 1 year in both native and transplanted habitats. Hence, differences in litter decay were supposed to reflect the degree of adaptability of microbial communities to litter quality. Polyphenols/nutrient and C/nutrient quotients appeared as the main parameters accounting for decomposition rates of Sphagnum litter. In particular, litter of minerotrophic Sphagnum species decomposed always faster than litter of ombrotrophic Sphagnum species, both in native and transplanted habitats. Decomposition rates of vascular plant litter in native habitats were always higher than the corresponding mass loss rates of Sphagnum litter. Minerotrophic forbs showed the fastest decomposition both in native and transplanted habitats in accordance with low C/P and C/N litter quotients. On the other hand, C/P quotient seems to play a primary role also in controlling decomposition of graminoids. Decomposition of deciduous and evergreen shrubs was negatively related to their high lignin content. Nitrogen release from Sphagnum litter was primarily controlled by C/N quotient, so that minerotrophic Sphagnum litter released more N than ombrotrophic Sphagnum litter. Overall, we observed slower N release from litter of ombrotrophic vascular plant species compared to minerotrophic vascular plant species. No single chemical parameter could predict the variability associated with different functional groups. The release of K was very high compared to all the other nutrients and rather similar between ombrotrophic and minerotrophic litter types. In Sphagnum litter, a higher C/P quotient was associated with a slower P mineralisation, whereas a faster P release from vascular plant litter seems primarily associated with lower C/P and polyphenols/P quotients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号