首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2363篇
  免费   34篇
  国内免费   168篇
林业   349篇
农学   23篇
基础科学   996篇
  180篇
综合类   750篇
农作物   19篇
水产渔业   37篇
畜牧兽医   192篇
园艺   15篇
植物保护   4篇
  2024年   10篇
  2023年   52篇
  2022年   52篇
  2021年   49篇
  2020年   54篇
  2019年   48篇
  2018年   34篇
  2017年   67篇
  2016年   73篇
  2015年   84篇
  2014年   172篇
  2013年   153篇
  2012年   151篇
  2011年   156篇
  2010年   145篇
  2009年   169篇
  2008年   148篇
  2007年   148篇
  2006年   123篇
  2005年   114篇
  2004年   81篇
  2003年   71篇
  2002年   36篇
  2001年   44篇
  2000年   41篇
  1999年   43篇
  1998年   40篇
  1997年   22篇
  1996年   20篇
  1995年   21篇
  1994年   37篇
  1993年   24篇
  1992年   18篇
  1991年   11篇
  1990年   19篇
  1989年   15篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1974年   1篇
  1952年   1篇
排序方式: 共有2565条查询结果,搜索用时 78 毫秒
111.
生物质颗粒燃料特性及其对燃烧的影响分析   总被引:3,自引:0,他引:3  
采用欧盟生物质固体成型燃料标准(CEN/TC 335)试验检测了中国和瑞典典型的10种生物质颗粒燃料,重点对中国的秸秆类颗粒燃料与瑞典的木质颗粒进行了对比,并分析其对燃烧特性的影响。结果表明中瑞两国的生物质颗粒燃料都能满足技术标准要求,瑞典木质颗粒具有较高的性能参数;中国的玉米秸秆颗粒燃料发热量比瑞典木质颗粒低20.9%,挥发分低,燃烧后灰渣中的硅含量高20%,灰熔点低,燃烧后灰分多,易结渣,对燃烧设备有较高的要求。  相似文献   
112.
天然气发动机燃烧过程非线性动力学特性   总被引:1,自引:0,他引:1  
利用非线性动力学数据分析技术对增压中冷天然气发动机燃烧过程的动力学特性进行了研究,结果表明:混合气浓度从当量比=1.00降低到稀燃极限时由缸压时间序列重构的二维相空间中,系统运动轨线都是有限范围内的非周期运动,轨线具有复杂、扭曲、重叠的几何结构;无论发动机是在当量混合气还是稀燃极限条件下运行,嵌入维m大于某一值以后,吸引子的关联维D均能达到饱和值且为分数,随着混合气变稀,燃烧循环变动增加,D逐渐增加,当=1.00、0.77、0.70和0.63时D分别为1.27、1.33、1.58和1.87,最大Lyapunov指数(LLE)大于零,分别为0.008 6、0.011、0.013和0.015 7,因此天然气发动机燃烧系统是一个低维非线性混沌系统。  相似文献   
113.
1.爆燃的成因 正常燃烧时,混合气在燃烧室内被压缩点火,火焰前锋从火花塞电极处向四周展开,火焰传播速度为15—30m/s。而爆震自燃形成的火焰中心所产生的火焰传播速度高达2000m/s以上,使未燃混合气以极高的速度燃烧。这种燃烧将会发生剧烈的压力增高,继而发生迅速的压力波动。压力波撞击气缸壁、活塞顶部,于是就发生爆燃特有的“咔咔”的尖锐的金属撞击声,即燃烧噪声。  相似文献   
114.
通过加入不同质量分数(5%~25%)的甲醇、乙醇、辛醇及其混合醇对松子壳热解重质油进行提质研究,考察醇添加剂对重质油理化特性影响及其存储稳定性。研究发现加入醇添加剂超声处理后能显著降低重质油的粘度、含水率和p H值,并提高其热值;同时使多环芳烃、酮类等物质含量降低,脂肪烃、芳香烃等含量增加。混合醇处理重质油的品质更好,存储56 d后性质仍较稳定,粘度和含水率随储存时间延长稍有增加。加入甲辛醇56 d后重质油的粘度为980 m Pa·s,含水率为21.02%,增长速率仅均为原始重质油的一半;且添加量越高,油的热值越高,添加量25%时热值为32.66 MJ/kg。但从热重分析发现甲辛醇添加量为20%时燃烧性能最好,其燃烧段的失重速率最大并且燃烧后的灰分最少。  相似文献   
115.
郭书君  李丽  梅树立 《农业机械学报》2017,48(S1):147-152, 165
植物叶片图像的采集过程中,由于自然环境或成像条件的影响,特别是夜间,采集到的图像大多带有椒盐噪声,造成图像质量下降。很多植物叶片含有丰富的叶脉,被噪声污染不利于后续的表型分析、图像分割等。椒盐噪声密度较小时,中值滤波降噪效果较好,但在噪声污染严重时滤波方法也无法有效去噪。针对这一问题,提出了基于概率PCA的图像修复模型。一幅光滑的不含噪图像通常可认为服从高斯分布,概率PCA能有效地提取描述这幅图像中的主要信息,通过估计模型参数重构因噪声引起的数据缺失,从而达到图像修复的目的。但是当噪声的缺失像素点聚集在叶脉上时,直接用概率PCA修复会出现明显的边界效应,因此本文先基于树的叶脉进行追踪,再对叶脉进行概率PCA修复,然后再基于整幅图像利用概率PCA模型修复,迭代次数根据修复后图像的PSNR值自适应地选择。为了验证所提出的模型的修复性能,进行了与常用滤波方法的对比试验。试验结果表明:去噪后的图像PSNR值比使用均值滤波高出6dB左右,比使用维纳滤波高出9dB左右,比使用高斯滤波高出7dB左右,比使用中值滤波高出1dB左右,并且在结构相似性上采用本文算法去噪后的图像与原始图像的相似度最高。因此,将概率PCA模型应用于植物叶片彩色图像修复是可行的、有效的,为其后续的图像处理提供了技术支持。  相似文献   
116.
进行了定容燃烧模拟装置内氢气绝热理论燃烧温度的热力学分析和计算,在定容燃烧弹内,实际的燃烧过程是定容过程而不是定压过程,应在定容绝热条件下进行氢气绝热理论燃烧温度的计算,氢气的定容绝热理论火焰温度和定压绝热理论火焰温度是不同的,在化学反应平衡方程式所需的化学计量浓度附近,其燃烧温度和压力都达到最大值。  相似文献   
117.
以无水液体乙醇为燃料,用铁铬合金电热丝为燃烧室内反应物加热,采用实验与数值模拟相结合的方法研究乙醇-空气小尺度层流扩散火焰散热对受限空间微火焰稳定性的影响。结果表明,采用电热丝向受限空间内的燃烧反应物加热,可以减少散热损失的影响,对稳燃有一定的帮助。电加热功率为合适值时,稳定燃烧极限最宽。电加热可提高火焰温度,增大化学反应速率,使火焰中心向上游移动。一定范围内,电加热功率的增幅大于散热的增幅,外加热功率对散热损失有抑制作用,增强微火焰的稳定性。  相似文献   
118.
以无水乙醇为燃料,运用荷电雾化技术,实验研究了锥-射流喷雾模式下双网格燃烧器的燃烧与热损失特性。结果表明,在当量比Φ为0.85~1.40区间内燃烧稳定,圆形片状火焰附着于燃烧网格附近,火焰直径与燃烧器内径相当。火焰温度、燃烧效率均随当量比的增大先上升后下降,在当量比Φ=1时分别达到最大值1 197.38 K、93.26%。尾气温度随当量比的增大而降低,壁面热损失随当量比增大而增加。壁面热损失与燃料完全燃烧释放热量比例为27.25%~33.08%,其中辐射热损失略高于对流热损失。燃烧器热效率在当量比Φ≤1下可达69%。双网格燃烧器可实现小尺度条件下液体乙醇的良好喷雾、蒸发与燃烧。  相似文献   
119.
对JET750G1型射流式离心泵内场噪声进行数值计算及试验,分析该泵过流部件诱发的流动噪声和流激噪声特性。采用大涡模拟法进行不同工况的非定常数值计算,输出各过流部件表面的压力脉动作为偶极子声源。运用声学有限元方法预测流动噪声;运用声学有限元耦合结构有限元方法预测流激噪声。搭建射流式离心泵内场噪声测试系统,用水听器对泵出口的流体动力噪声进行测试,获得噪声的时域和频域信息。分析结果表明:噪声在轴频和叶频处计算和试验测试误差在4%以内;叶轮和导叶的动静干涉以及流体和结构的共振均是诱发射流式离心泵内场噪声的重要因素,过流部件自身的结构特性对内场噪声有一定影响;流动噪声整体大于流激噪声,表明内场噪声主要由流体的压力脉动特性决定;叶轮旋转偶极子声源诱发的内场噪声在轴频(47.5 Hz)处达到180 d B左右,在射流式离心泵的内场噪声中起主导作用。研究结果为射流式离心泵的低噪设计提供了参考。  相似文献   
120.
以高温小桐子油在单缸水冷四冲程柴油机上进行试验,测录了多循环的瞬时气缸压力与高压油管燃油压力,对比分析了最大转矩点燃用柴油与高温小桐子油,燃用高温小桐子油在不同转速的全负荷工况与标定点转速不同负荷工况在喷油与燃烧过程中各参数的循环变动。结果发现,燃用小桐子油滞燃期的变动最突出;2000rpm时喷油持续期、滞燃期循环变动较大,使得其最大燃烧压力升高率的变动也较大;1400rpm时喷油前期和燃烧后期的缸内压力循环变动均较大;10%负荷,喷油过程循环变动大,同时喷入的燃油少,缸内空气量大,燃油雾化、蒸发、混合的不确定性增强,后续燃烧过程的差异大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号