全文获取类型
收费全文 | 28456篇 |
免费 | 1659篇 |
国内免费 | 3202篇 |
专业分类
林业 | 2102篇 |
农学 | 1760篇 |
基础科学 | 4781篇 |
9246篇 | |
综合类 | 9158篇 |
农作物 | 774篇 |
水产渔业 | 1691篇 |
畜牧兽医 | 962篇 |
园艺 | 481篇 |
植物保护 | 2362篇 |
出版年
2024年 | 214篇 |
2023年 | 533篇 |
2022年 | 785篇 |
2021年 | 899篇 |
2020年 | 982篇 |
2019年 | 1143篇 |
2018年 | 880篇 |
2017年 | 1289篇 |
2016年 | 1591篇 |
2015年 | 1148篇 |
2014年 | 1394篇 |
2013年 | 1704篇 |
2012年 | 2285篇 |
2011年 | 2129篇 |
2010年 | 1727篇 |
2009年 | 1582篇 |
2008年 | 1574篇 |
2007年 | 1770篇 |
2006年 | 1479篇 |
2005年 | 1256篇 |
2004年 | 1055篇 |
2003年 | 881篇 |
2002年 | 736篇 |
2001年 | 692篇 |
2000年 | 571篇 |
1999年 | 455篇 |
1998年 | 397篇 |
1997年 | 350篇 |
1996年 | 326篇 |
1995年 | 289篇 |
1994年 | 307篇 |
1993年 | 202篇 |
1992年 | 167篇 |
1991年 | 162篇 |
1990年 | 105篇 |
1989年 | 84篇 |
1988年 | 55篇 |
1987年 | 56篇 |
1986年 | 18篇 |
1985年 | 12篇 |
1984年 | 6篇 |
1983年 | 8篇 |
1982年 | 1篇 |
1981年 | 4篇 |
1980年 | 4篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1963年 | 1篇 |
1962年 | 4篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
《Communications in Soil Science and Plant Analysis》2012,43(11-12):1775-1781
Abstract Soil aeration status in relation to water table was analyzed by contour mapping in a forested wetland, an emergent marsh, and an irrigated rice field. Two soil aeration status indicators, oxygen (O2) and redox potential (Eh), showed a significant correlation (P<0.01). Soil O2 and Eh levels generally decreased with the water table rise in the forested wetland and marsh, but with a noncontinuous pattern. The results indicate that soil aeration status could be temporally improved at an optimum water table level, probably due to O2 transport by wetland plants. The soil Eh in the rice fields clearly showed a seasonal pattern regardless of the water tables. 相似文献
993.
《Communications in Soil Science and Plant Analysis》2012,43(13-14):1957-1972
Abstract The relationships between nitrogen (N) and phosphorus (P) concentrations in surface flooding water and those in the leachate of various soil depths were monitored, and temporal variation of leaching losses of N and P from a paddy plot during rice cultivation was estimated under the conditions of southern Korea. Even flooded conditions nitrification in subsurface soil was identified, but nitrate concentrations in leachate were less than 10 mg/L, the standard drinking water nitrate concentration set by the World Health Organization (WHO). The NO3‐N and ortho‐P concentrations in the leachate were generally higher than those in the surface flooding water. Field data implied that leaching losses would not be accurately estimated under the flooded conditions of the paddy field when using the N and P concentrations of surface flooding water and infiltration depth. The leaching losses of NO3‐N from paddy fields were high immediately after fertilization. The study results suggested that proper fertilization and irrigation strategies are required to reduce leaching losses of NO3‐N from paddy fields. 相似文献
994.
《Communications in Soil Science and Plant Analysis》2012,43(19-20):3002-3031
Recently, changes in the utilization practices of animal manures for fertilization have been encouraged to reduce the potential of nonpoint pollution of lakes and streams from agricultural land. However, the potential impact of changing some of these practices has not been fully studied. The objective of this study was to examine the potential impact of limiting poultry litter application times on nutrient movement important to water quality. The WinEPIC model was used to simulate poultry litter applications during the winter months and chemical fertilizer application, with both cool season and warm season grass pastures on the major soil regions of Alabama. With the warm season grass, soluble nitrogen (N) losses could be reduced if the application of poultry litter was made after 30 December. With the cool season grasses, there was no significant difference in application dates for poultry litter for soluble N losses for any soil region, and no improvement could be noted for limiting applications in northern Alabama compared to southern Alabama. No significant difference was observed for soluble phosphorus (P) losses for application date for either warm season or cool season grass pastures. This indicates that factors other than plant P uptake during the growing season were the dominant regulators of the amount of soluble P lost in runoff. Also, the results would indicate that best management practices such as are administered with the P index are more important than plant growth factors in determining N and P losses to the environment. 相似文献
995.
利用环境生长室探讨不同CO2浓度和土壤水分亏缺处理下玉米植株生物量、气孔形态与分布特征、叶片气体交换参数、叶绿素荧光参数等生长及生理指标的变化规律。以‘郑单958’ 玉米品种为试材,利用环境生长室设置2个CO2浓度和4个土壤水分梯度对玉米进行CO2浓度和水分处理。结果表明:1)不同程度土壤水分亏缺均显著降低玉米地上生物量(P<0.05),但CO2浓度升高增加了轻度水分亏缺条件下玉米地上生物量(P<0.01)和总生物量(P<0.01)。2)大气CO2浓度升高导致轻度和中度水分亏缺条件下玉米的净光合速率(Pn)分别提高15.8%(P<0.05)和25.7%(P=0.001),而CO2浓度升高却降低了玉米叶片蒸腾速率(P<0.001)和气孔导度(P<0.001),最终导致玉米瞬时水分利用效率均显著提高(P<0.001)。3)不同水分处理对玉米叶片气孔密度和单个气孔形态特征均造成显著影响(P<0.01)。因此,大气CO2浓度升高可以增加轻度水分亏缺条件下玉米叶片氮含量、叶片非结构性碳水化合物含量和光合电子传递速率,从而提高玉米植株的生物量累积以及叶片碳同化能力和水分利用效率。研究结果将为深入理解气候变化背景下玉米对大气CO2浓度升高和土壤水分亏缺的生理生态响应机制提供科学依据。 相似文献
996.
[目的] 通过分析十大孔兑水土流失面积、强度及水土流失动态变化,为流域综合治理提供参考依据。[方法] 基于全国土壤侵蚀遥感调查结果和全国水土流失动态监测成果,对比分析流域水土流失及其分布、动态变化。[结果] 十大孔兑流域植被面积占流域面积的63.97%,以中低覆盖和低覆盖为主,分别占植被覆盖面积的48.85%和36.54%。2021年水土流失面积为4374.98 km2,占流域面积的40.63%;与2020年、1999年和1985年相比,2021年水土流失分别减少46.32,3 664.50,4 958.03 km2,水土流失主要分布在草地、林地、耕地和其他土地4个地类上,占水土流失总面积的96.69%。[结论] 十大孔兑依然是黄河流域水土流失治理的难点地区,高强度侵蚀减少与年度监测成果未考虑沟道侵蚀有关;该区应坚持以“以沙棘种植为主的植被建设,以淤地坝建设为重点的工程布局,以锁边固沙为前提的治沙方针,大力推进拦沙换水试点工程”的流域综合治理策略。 相似文献
997.
英国赠款小流域治理管理项目自2004年3月正式启动实施以来,围绕项目目标及有关各个方面,开展了一系列研究、探索和实践,取得了具有创新意义和推广价值的成果。该文简要介绍了项目所取得的主要创新经验,包括在水土保持、流域治理项目中应用参与式工作方法,强调可持续生计途径,倡导部门协作和资源整合,推行社区主导式的管理和发展模式,以及建立完善的监测评价体系等。通过英国赠款小流域治理管理项目的实践可以证明,这些创新性的作法,对于今后水土保持等类似项目的实施,特别是对于调动农民主动参与、提高资源和资金使用效率,加强项目的扶贫效果,实现水土保持和流域管理的可持续发展,都具有宝贵的借鉴意义。 相似文献
998.
Modeling daily soil water dynamics during vertical drainage using the incoming flow concept 总被引:1,自引:0,他引:1
Crop management models require simulation of daily soil water dynamics. The objective of this study was to develop a model to simulate the daily soil water dynamics during vertical drainage with reasonable accuracy using the incoming flow concept. The execution of this model, which has been developed based on the conservation of mass law, consists of two steps. First, calculating the potential daily change of soil water content (Δθp) for each soil layer in the profile assuming each one receives no water from the above layer. Then, calculating the actual daily change of soil water (Δθa) for each soil layer in the profile by adjusting Δθp using the incoming water flow, which can be defined as the amount of drainage water that reaches a layer in a soil profile from the above layer. The model was compared with the Suleiman and Ritchie [Suleiman, A.A., Ritchie, J.T., 2004. Modifications to the DSSAT vertical drainage model for more accurate soil water dynamics estimation. Soil Sci. 169 (11), 745–757] vertical drainage model (SRVDM) and HYDRUS-1D for diverse soils and was tested using drainage experimental data of a Eutric Regosol in Bekkevoort, Belgium and a sandy soil in Georgia, U.S. The difference in Δθp between the new model and HYDRUS-1D for diverse soils ranged from − 0.01 to 0.016 m3 m− 3 for the first day and from − 0.005 to − 0.025 m3 m− 3 for the second day while the difference in Δθp between the SRVDM and HYDRUS-1D for these soils ranged from 0.014 to 0.062 m3 m− 3 for the first day and from − 0.01 to 0.026 m3 m− 3 for the second day. The relative maximum absolute errors in Δθa between the new model and HYDRUS-1D was 10% while the relative maximum absolute errors in Δθa between the SRVDM and HYDRUS-1D was 112%. In the experiments, the root mean square difference of the soil water content for the new model was lower than that for the SRVDM at the different soil depths. These results indicated that the new model outperformed the SRVDM in simulating Δθp and Δθa for diverse soil. It can be concluded that the new model was robust and reasonably accurate for diverse soils at different soil depths. The implementation of such model will improve the accuracy and applicability of regional soil water dynamics simulation and will reduce considerably the computational time and the required inputs. 相似文献
999.
Soils with very slowly permeable fragipans and fragipan-like argillic horizons are extensive throughout the Palouse Region of northern Idaho and eastern Washington, USA. These soils develop seasonal perched water tables (PWTs) under the xeric moisture regime of the region. The objective of this study was to utilize a hydropedology approach to examine the linkages between fragipans, PWTs, and catchment-scale hydrological processes such as soil water storage, runoff, and lateral throughflow. A 1.7-ha catchment dominated by Fragixeralfs (Fragic Luvisols) was instrumented with 135 automated shallow wells to monitor PWTs. Soil water content was measured with water content reflectometry probes, and catchment outflow was measured with a flume. A 35 m × 18 m plot was isolated hydrologically from the surrounding hillslope using tile drains and plastic sheeting to measure perched water outflow. Results show that during the wet winter and spring months, the transition from unsaturated to saturated conditions is accompanied by changes in volumetric water storage of only 4–5%. PWT levels are at the surface of ∼ 26–45% of the catchment soils during periods of high rainfall and snowmelt, thereby generating saturation-excess surface runoff from hillslopes. Observed solute movement via subsurface flow is very rapid and ranges between 2.9 and 18.7 m d− 1 when PWTs are maintained in more-permeable Ap and Bw horizons. Subsurface lateral flow accounts for as much as 90% of the incident precipitation and snowmelt during early spring. Data indicate that the relatively shallow depth to the fragipans and high Ksat in surface soil layers combine to create a very flashy hydrological system characterized by considerable temporal and spatial variation in patterns of saturation-excess runoff. 相似文献
1000.
《Land Degradation \u0026amp; Development》2017,28(2):708-717
Man‐made and natural sediment sinks provide a practical means for reducing downstream reservoir sedimentation by decreasing soil erosion and enhancing the rate of sedimentation within a catchment. The Minizr catchment (20 km2) in the northwest Ethiopian highlands contains numerous man‐made soil and water conservation (SWC) structures such as soil bunds (Erken), fanya juu ridge (Cab) and micro‐trenches and natural sediment sinks such as wetlands, floodplains and grassed waterways. These sediment sinks reduce downstream sedimentation into the Koga reservoir, located at the catchment outlet, however, a large quantity of sediment is still reaching the reservoir. This study evaluates the function and effectiveness of both man‐made SWC structures and natural sediment sinks in reducing sediment export from the Minizr catchment. SWC structures and natural sediment sinks were digitized using Google Earth Imagery. Sediment pins and vertical sampling through the deposit were used to quantify the amount of deposited sediment. In addition, inflow and outflow of suspended sediment data were used to calculate the sediment‐trapping efficacies (STE) of man‐made SWC structures (soil bunds and fanya juu ridges) and natural sediment sinks. Results reveal that 144 km soil bunds and fanya juu ridges trapped 7,920 Mg y−1 (55 kg m−1 y−1) and micro‐trenches trapped 13·26 Mg y−1, each micro‐trench on average trapped 23 kg y−1. The 17 ha floodplain located in the centre of the catchment trapped 9,970 Mg y−1 (59 kg m−2 y−1), while a wetland with a surface area of 24 ha, located near the outlet of the catchment, trapped 8,715 Mg y−1 (36 kg m−2 y−1). The STEs of soil bunds and fanya juu ridges, wetlands and floodplains were 54%, 85% and 77%, respectively. Substantial differences were observed between the STE of grassed and un‐grassed waterways at 75% and 21%, respectively. Existing man‐made and natural sediment sinks played an important role in trapping sediment, with 38% (26,600 Mg y−1) of transported sediment being trapped, while 62% (43,000 Mg y−1) is exported from the catchment and thus enters the Koga reservoir. Therefore, additional catchment treatment measures are required as an integrated catchment scale sediment trapping approach to help reduce sediment loads entering Koga reservoir. Moreover, to maximize the effectiveness of sediment trapping measures, avoid structural failure and ensure their sustainability, regular maintenance is needed. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献