首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   4篇
  国内免费   5篇
林业   1篇
农学   4篇
  32篇
综合类   14篇
农作物   2篇
畜牧兽医   5篇
园艺   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   3篇
  2013年   11篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1985年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
Salinity stress and inefficient nitrogen fertilization adversely affect cotton growth and yield. The effect of salinity on the growth and stress response of cotton seedlings and the effect on N‐use efficiency from the use of the inhibitors of urease (NBPT) and nitrification (DCD) under salinity stress were studied in growth chambers. The study consisted of three levels of salinity – low (0.45 dS m?1), moderate (8 dS m?1) and high (16 dS m?1) – and five N treatments – unfertilized control, 100 % N rate with urea, 80 % N rate with urea, 80 % N rate with urea +NBPT and 80 % N rate with urea +NBPT + DCD. The results indicated that salinity stress reduced plant growth (low leaf area and plant dry matter), decreased N assimilation (low NR, GS and protein), increased plant stress response (high GR and SOD), and decreased leaf chlorophyll, stomatal conductance and quantum yield. Addition of NBPT to urea improved N uptake by 22 % under low salinity; however, this effect was not observed with increasing salinity. No benefit of addition of DCD was observed in any of the parameters collected. In conclusion, salinity stress hindered the performance of the additive NBPT and negatively affected the growth and physiology of cotton.  相似文献   
2.
In order to study the influence of dicyandiamide added into the insulation paper on the oil-paper insulation during the aging process.The insulation paper containing dicyandiamide and the insulation paper without any stabilizer are prepared. They are immersed in transformer oil separately and placed in the aging chamber with predefined temperature of 130℃ for 31 days to perform thermal aging experiment of oil-paper insulation. The specimens are periodically sampled and some parameters are measured like the degree of polymerization(DP), the breakdown voltage, the nitrogen content, the acidity of insulation oil, and UV-Vis spectrum. The results show that the insulation paper added with dicyandiamide has a distinct anti-aging and anti-breakdown effect and the DP is 58% higher than that of blank sample at the later stage of aging. In the aging process, decline of the nitrogen content of insulation paper is not serious. The oil-paper sample containing dicyandiamide has a far lower value of acidity than that of blank sample, besides the oil color is deeper. Dicyandiamide in the insulation paper improves not only the anti-aging and anti-breakdown properties, but also the performance of oil in the aging process.  相似文献   
3.
采用盆栽试验研究了2种不同氮源(尿素氮、农家肥氮)与硝化抑制剂双氰胺(DCD)配施后对温室芹菜氮素吸收和营养品质的影响。结果表明:尿素(Urea)和腐熟牛粪(Dung)分别与DCD配施在一定程度上均可促进芹菜产量的提高和品质的改善,减少土壤中硝态氮含量,降低芹菜体内硝酸盐累积,显著提高氮素利用率。与单施肥料相比,Urea+DCD和Dung+DCD可使土壤中铵态氮含量增加22.71%~92.97%,硝态氮含量降低12.28%~56.73%;可使芹菜茎、叶吸氮量分别增加29.24%~74.89%,30.89%~66.33%,地上部氮素利用率分别提高到16.85%和30.30%。同时,Urea+DCD和Dung+DCD还可促进芹菜产量和株高的增加,但差异未达到显著性水平(P0.05)。芹菜体内硝酸盐含量则分别降低37.05%,17.18%(茎),25.21%和7.63%(叶),并且还能显著提高芹菜中可溶性糖、蛋白质、游离氨基酸和Vc含量。综合比较可知,尿素和DCD配施在减少氮素损失,降低芹菜体内硝酸盐含量以及提高营养品质方面的综合效果较佳。  相似文献   
4.
Recent lysimeter studies have demonstrated that the nitrification inhibitor, dicyandiamide (DCD), can reduce nitrate (NO) leaching losses from cow urine patches in grazed pasture systems. The objective of this study was to quantify the effects of fine particle suspension (FPS) DCD on soil mineral N components, pasture yield, nutrient uptake and pasture quality under grazed pasture conditions. A field study was conducted on the Lincoln University dairy farm, Canterbury, New Zealand, from 2002 to 2006. FPS DCD was applied to grazed pasture plots at 10 kg ha?1 in early May in addition to applied cow urine patches at a nitrogen (N) loading rate of 1000 kg N ha?1, with DCD reapplied in early August. Soil mineral N levels in the urine patches were monitored. Pasture yield, N and cation concentrations and uptake were measured in treatment urine patches and inter‐urine areas of the pasture. Comparisons were made with control plots which did not receive DCD. NO levels under the DCD‐treated urine patches (0–7.5 cm) were in the order of 10 kg N ha?1 compared with 40–80 kg N ha?1 under untreated patches, and soil ammonium (NH) levels were consistently higher under the DCD‐treated patches. The DCD significantly and consistently increased pasture yield in both the urine patches, and inter‐urine areas of the pasture in all 4 years of the trial. Mean annual dry matter (DM) yields over 4 years were inter‐urine areas, 10.3; inter‐urine + DCD, 12.4; urine, 12.4 and urine +DCD 16.0 t DM ha?1, representing an average DM yield increase of 20 and 29% in inter‐urine and urine patch areas, respectively. On a whole paddock basis, the increase in annual DM yield resulting from DCD application was estimated to be 21%. N, calcium (Ca), magnesium (Mg) and potassium (K) concentrations in pasture were unaffected by treatment with DCD; however, total annual uptake of these nutrients by pasture was significantly higher in all years where DCD had been applied. Pasture DM, protein, carbohydrate, metabolizable energy and fibre levels and sward clover content were not affected by treatment with DCD. The results demonstrate the agronomic value of the DCD treatment in addition to the environmental benefits in a grazed pasture system.  相似文献   
5.
A cut plot experiment was undertaken at two sites in Ireland, one a free‐draining acid brown earth at Moorepark (MPK) and the other a fine loam soil with imperfect drainage at Johnstown Castle (JC). The effect of applying the nitrification inhibitor dicyandiamide (DCD) at 10 kg ha?1 in July, August and September or not applying DCD to plots receiving synthetic urine or zero urine on spring and annual herbage production was examined. In the experiment, each site received 350 kg nitrogen (N) fertilizer ha?1 year?1. The application of DCD in August at a rate of 10 kg ha?1 significantly increased spring and annual herbage production by 14 and 15%, respectively, at MPK, when applied following urine application in year 1. There was no effect of DCD applied in year 1 on herbage production at JC. The application of DCD in August resulted in lower soil total oxidized N (TON) content up to sampling day 56 post‐urine application, at MPK in year 1, retaining higher N content in the soil. There was no effect of DCD on any of the parameters measured in year 2 at MPK or at JC. Urine application did not increase spring herbage production at either site. Urine application significantly increased annual herbage production at MPK only in year 1. Urine application increased annual herbage N uptake, herbage crude protein (CP) content and soil mineral N at both sites in both years.  相似文献   
6.
The nitrification inhibitor dicyandiamide (DCD) has had variable success in reducing nitrate () leaching and nitrous oxide (N2O) emissions from soils receiving nitrogen (N) fertilizers. Factors such as soil type, temperature and moisture have been linked to the variable efficacy of DCD. As DCD is water soluble, it can be leached from the rooting zone where it is intended to inhibit nitrification. Intact soil columns (15 cm diameter by 35 cm long) were taken from luvic gleysol and haplic cambisol grassland sites and placed in growth chambers. DCD was applied at 15 or 30 kg DCD/ha, with high or low precipitation. Leaching of DCD, mineral N and the residual soil DCD concentrations were determined over 8 weeks high precipitation increased DCD in leachate and decreased recovery in soil. A soil × DCD rate interaction was detected for the DCD unaccounted (proxy for degraded DCD). In the cambisol, degradation of DCD was high (circa 81%) and unaffected by DCD rate. In contrast, DCD degradation in the gleysol was lower and differentially affected by rate, 67 and 46% for the 15 and 30 kg/ha treatments, respectively. Variation in DCD degradation rates between soils may be related to differences in organic matter content and associated microbiological activity. Variable degradation rates of DCD in soil, unrelated to temperature or moisture, may contribute to changing DCD efficacy. Soil properties should be considered when tailoring DCD strategies for improving nitrogen use efficiency and crop yields, through the reduction of reactive nitrogen loss.  相似文献   
7.
双氰胺对水稻根系及合特性和经济性状的影响   总被引:2,自引:0,他引:2  
为研究硝化抑制剂双氰胺的效应及其在水稻配方肥中的应用,以中稻培两优93为材料,采用盆栽法,研究了双氰胺对水稻根系、光合特性以及经济性状的影响。结果表明,低剂量的双氰胺(7.5和15kg/hm^2)能显著增加根系体积,改善根系的吸收性能。7月5日测定的根系活力随双氰胺用量的增加而增强,随后,各处理差别不明显。双氰胺能使叶绿素含量略微增加,并能改善水稻植株下部叶片光合性能,而对蒸腾速率、气孔导度影响不大。低剂量双氰胺处理有利于水稻植株干物质积累,促使水稻增产14.9%-25.74%。认为在水稻专用配方肥中添加双氰胺时,以不超过15kg/hm^2,即配方肥用量的2%左右为宜。  相似文献   
8.
采用灭菌土培、非灭菌土培、田间蔬菜种植、添加外源降解菌土培试验研究了土壤中双氰胺(DCD)降解及与降解菌的关系。结果显示,不论是单施DCD、尿素配施DCD,还是碳酸氢铵配施DCD的土壤,灭菌处理的土壤中DCD半衰期分别比不灭菌处理的长13.56、5.79、14.51d。降解菌生长期间,降解菌总量(x)与DCD降解呈显著正相关,拟合的线性方程为y=3.1841x-2.5452,r=0.9752。外源DCD降解真菌可在灭菌土壤中定殖并有效降解DCD,培养15d后,U+DCD+DCD降解菌处理土壤中DCD降解真菌的数量增加至36.40×105cfu,且DCD含量极显著降低。这些结果表明土壤中DCD降解与降解菌关系极为密切,添加外源真菌加速了土壤中DCD降解。  相似文献   
9.
Nitrous oxide (N2O) is a potent greenhouse gas, and nitrate () is a water contaminant. In grazed grassland, the major source of both leaching and N2O emissions is nitrogen (N) deposited in animal excreta, particularly in the urine. The objective of this study was to determine the effectiveness of two nitrification inhibitors: (i) a solution of dicyandiamide (DCD) and (ii) a liquid formulation of 3,4‐dimethylpyrazole phosphate (DMPP) for reducing N2O emissions and leaching from urine patch areas in two grazed pasture soils under different environmental conditions. In the Canterbury Templeton soil, the nitrification rate of ammonium from the animal urine applied at 1000 kg N/ha was significantly decreased by the application of DCD (10 kg/ha) and DMPP (5 kg/ha). N2O emissions, measured over a 3‐month period, from dairy cow urine applied to the Canterbury Templeton soil were 1.14 kg N2O‐N/ha, and this was reduced to 0.43 and 0.39 kg N2O‐N/ha by DCD and the liquid DMPP, respectively. These are equivalent to 62–66% reductions in the total N2O emissions. Nitrate leaching losses from dairy cow urine applied to the Waikato Horotiu soil lysimeters were reduced from 628.6 kg ‐N/ha to 400.6 and 451.5 kg ‐N/ha by the application of DCD (10 kg/ha) or DMPP (1 kg/ha), respectively. There was no significant difference between the DCD solution and the liquid DMPP in terms of their effectiveness in reducing N2O emissions or leaching under the experimental conditions of this study. These results suggest that both the liquid formulations of DCD and DMPP have the potential to be used as nitrification inhibitors to reduce N2O emissions and leaching in grazed pasture soils.  相似文献   
10.
High nitrate () concentrations in pastures and forages represent a health risk to grazing livestock. A field trial was conducted on the Lincoln University Dairy Farm, New Zealand, to investigate the effects of applying the nitrification inhibitor dicyandiamide (DCD) on soil extractable N and pasture concentrations in winter and spring. Treatments were control (T1), urea (T2), urea + DCD (T3), May urine + DCD (T4), August urine + DCD (T5), May urine (T6) and August urine (T7). Urine treatments were applied to the ryegrass‐white clover pasture in either May or August. The DCD treatments were applied at 10 kg DCD ha?1 in May and August and urea at 25 kg N ha?1 at selected intervals. Soil samples (0‐ to 75‐ and 75‐ to 150‐mm horizons) were taken regularly to monitor soil and ammonium () levels. Six pasture harvests were conducted from August 2007 to March 2008 and samples analysed for ‐N concentrations and total N content. Application of DCD significantly (P < 0·001) increased total dry‐matter (DM) production by 39 and 42% for the autumn and spring urine treatments, respectively, compared to the urine‐alone treatments. In addition, the application of DCD also significantly (P < 0·001) increased DM yield by 12% on the urea‐only treatment. DCD significantly (P < 0·001) reduced pasture concentrations in both autumn‐ and spring‐applied urine treatments where DCD was applied. This was directly linked to reductions in soil , and increases in soil , from DCD application. The preferential uptake by pasture for ‐N over ‐N may also have been a contributing factor. DCD application can therefore substantially reduce pasture ‐N concentrations to safe levels under high N‐loading (urine patch) conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号