排序方式: 共有31条查询结果,搜索用时 0 毫秒
31.
为了提高鱼油二十碳五烯酸(eicosapentaenoic acid,EPA)含量的测定精度,该研究将经验模态分解(empirical mode decomposition,EMD)和数学形态学滤波相结合的近红外光谱去噪方法应用于鱼油的一阶导数光谱预处理中,给出了方法的原理和步骤,评估了该方法的去噪效果。运用偏最小二乘回归(partial least squares regression,PLSR)建立了鱼油EPA近红外光谱的预测模型,用处理后的光谱计算了鱼油中EPA的含量,并与九点平滑和小波变换方法的处理结果进行了对比分析。结果表明:与传统的九点平滑处理结果相比,信噪比(signal to noise ratio,SNR)从14 d B左右提高到35 d B左右,原始信号与消噪信号之间的标准差由0.005 71降到0.002 26;预测集的决定系数由0.959 3提高到0.987 9,预测均方根误差(root mean square error,RMSE)由0.060 1降为0.031 2。证明了组合的EMD和数学形态学滤波方法在光谱处理过程中的可靠性,提高了鱼油EPA含量近红外光谱的定量分析精度。 相似文献