首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   9篇
基础科学   7篇
  7篇
综合类   15篇
农作物   1篇
植物保护   1篇
  2023年   1篇
  2020年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
排序方式: 共有31条查询结果,搜索用时 3 毫秒
31.
苹果采摘机器人夜间图像降噪算法   总被引:1,自引:6,他引:1       下载免费PDF全文
苹果采摘机器人图像处理系统采集到的实时夜间图像含有大量的噪声,影响采摘效率。通过差影法对夜间图像进行噪声分析,判定其噪声类型为以高斯噪声为主,并伴有部分椒盐噪声的混合噪声。针对高斯噪声去除难题,将独立成分分析(independent component analysis,ICA)理论引入夜间图像降噪,并尝试采用粒子群优化算法(particle swarm optimization,PSO)对ICA进行优化,建立基于PSO优化的ICA降噪算法(PSO-ICA),以期最大限度地降低夜间图像的噪声污染。利用标准Lenna图像和自然光下的苹果图像,进行仿真试验,结果表明PSO-ICA方法降噪效果最为理想。然后对白炽灯、荧光灯、LED灯3种不同的人工光源下采集到10个样本点的夜间图像进行验证试验,结果表明,从视觉效果评价,在3种人工光源环境下,PSO-ICA降噪方法得到低噪图像均表现为噪点明显减少;从相对峰值信噪比(relative peak signal-to-noise ratio,RPSNR)看,在3种人工光源下的平均值,PSO-ICA得到的低噪图像,分别比原始图像、均值滤波降噪和ICA降噪得到的图像的相对峰值信噪比提高21.28%、12.41%、5.53%;从运行时间看,PSO-ICA方法较ICA方法的运行时间平均减少了49.60%。PSO-ICA方法用于夜间图像降噪有着独到的优势,为实现苹果采摘机器人的夜间作业打下坚实的基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号