首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1947篇
  免费   143篇
  国内免费   324篇
林业   272篇
农学   401篇
基础科学   30篇
  81篇
综合类   796篇
农作物   211篇
畜牧兽医   36篇
园艺   31篇
植物保护   556篇
  2024年   15篇
  2023年   41篇
  2022年   64篇
  2021年   78篇
  2020年   72篇
  2019年   64篇
  2018年   68篇
  2017年   62篇
  2016年   84篇
  2015年   98篇
  2014年   82篇
  2013年   88篇
  2012年   105篇
  2011年   108篇
  2010年   117篇
  2009年   100篇
  2008年   107篇
  2007年   118篇
  2006年   93篇
  2005年   82篇
  2004年   58篇
  2003年   47篇
  2002年   35篇
  2001年   58篇
  2000年   49篇
  1999年   43篇
  1998年   38篇
  1997年   49篇
  1996年   43篇
  1995年   50篇
  1994年   33篇
  1993年   37篇
  1992年   32篇
  1991年   48篇
  1990年   30篇
  1989年   25篇
  1988年   17篇
  1987年   17篇
  1986年   15篇
  1985年   6篇
  1984年   6篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   8篇
  1977年   2篇
  1976年   2篇
  1962年   3篇
  1955年   2篇
排序方式: 共有2414条查询结果,搜索用时 370 毫秒
141.
1981年在河北农业大学温室分别用中国小麦叶锈菌4个小种360、376、377和60对从美国引进的13个抗锈品种进行了抗叶锈性测定,在河北省植保所田间进行了成株期对叶、条锈的抗性测定.1982年在美国堪萨斯州立大学温室分别用美国的小麦叶绣菌培养物PRTUS1、3、4、5、6、7、8、9、10、11、13和19对13个品种中的9个进行了抗叶锈性测定.苗期测定结果指出,其中3个品种Kans 63324,STW 646407和II-11996-4R-SM-1R对所测的中国小种都表现抵抗,但对美国的培养物大多数抵抗,而在所测的9个品种中没有对所有美国培养物都抵抗的.在对比两国之间中国小麦叶锈菌小种和美国小麦叶锈菌培养物的毒性时进一步指出,有些品种犹如LA1415,STW597725和STW597947对美国的少数培养物抵抗,而对所有的中国小种感染.田间试验用小麦条锈菌小种19和21接种指出品种NB61975、NB66523和STW597944对条锈是免疫的,NB61977和II-119966-4R-SM-1R是高抗的.  相似文献   
142.
Summary Seven single-plant selections of wild emmer, with temperature-sensitive minor-effect genes for stripe rust resistance, were intercrossed in eight combinations. The resulting progenies were studied for a possible additive gene action.The transgressive segregation towards resistance in F2 observed in all the combinations indicates that additive gene action for resistance indeed occurs in wild emmer. The common occurrence of this phenomenon in random combinations suggests further that several minor-effect genes are involved.Following selection of the most resistant plants in F2, a marked shift towards resistance was noted in F3, which demonstrates a positive response to selection. In some instances, additive resistance selected for (in F2) at the high temperature-profile was expressed (in F3) also at the low temperature-profile. This kind of resistance, when utilized in breeding programmes, promises therefore to be effective over a range of temperatures.  相似文献   
143.
M. A. Chandler    W. F. Tracy 《Plant Breeding》2007,126(6):569-573
In maize, timing of vegetative phase change has been implicated in the response to certain pests and environmental stresses. Common rust is the most serious disease of sweet corn in the north central United States. Sweet corn hybrids differing for resistance to common rust were evaluated for vegetative phase change traits. There were significant differences among hybrids for all vegetative phase change traits measured, as well as resistance to common rust. Certain hybrids displayed rapid transition (within two leaves) from juvenile to adult vegetation, while others displayed prolonged transition (within four leaves). There were no significant correlations between vegetative phase change traits and common rust severity among the commercial sweet corn hybrids evaluated in this experiment.  相似文献   
144.
Summary Two RAPD markers linked to gene for resistance (assayed as pustule number cm−2 leaf area) to rust [Uromyces fabae (Pers.) de Bary] in pea (Pisum sativum L.) were identified using a mapping population of 31 BC1F1 [HUVP 1 (HUVP 1 × FC 1] plants, FC 1 being the resistant parent. The analysis of genetics of rust resistance was based on the parents, F1, F2, BC1F1 and BC1F2 generations. Rust resistance in pea is of non-hypersensitive type; it appeared to be governed by a single partially dominant gene for which symbol Ruf is proposed. Further, this trait seems to be affected by some polygenes in addition to the proposed oligogene Ruf. A total of 614 decamer primers were used to survey the parental polymorphism with regard to DNA amplification by polymerase chain reaction. The primers that amplified polymorphic bands present in the resistant parent (FC 1) were used for bulked segregant analysis. Those markers that amplified consistently and differentially in the resistant and susceptible bulks were separately tested with the 31 BC1F1 individuals. Two RAPD makers, viz., SC10-82360 (primer, GCCGTGAAGT), and SCRI-711000 (primer, GTGGCGTAGT), flanking the rust resistance gene (Ruf) with a distance of 10.8 cM (0.097 rF and LOD of 5.05) and 24.5 cM (0.194 rF and a LOD of 2.72), respectively, were identified. These RAPD markers were not close enough to Ruf to allow a dependable maker-assisted selection for rust resistance. However, if the two makers flanking Ruf were used together, the effectiveness of MAS would be improved considerably.  相似文献   
145.
Langdon durum D-genome disomic substitution lines were used to study the chromosome locations of adult-plant leaf rust resistance genes identified from tetraploid wheat accessions. The accessions are 104 (Triticum turgidum subsp. dicoccum var. arras) and 127 (T. turgidum subsp. durum var. aestivum). The complete sets of the substitution lines were crossed as female parents with the accessions and F1 double monosomic individuals selected at metaphase I. Segregating F2 individuals were inoculated during the flag leaf stage with pathotype UVPrt2 of Puccinia triticina. The substitution analysis involving accession 104 showed that the gene for leaf rust resistance is located on chromosome 6B. The analysis with accession 127 indicated that chromosome 4A carries a gene for leaf rust resistance. The two novel genes are temporarily designated as Lrac104 and Lrac127, respectively from accessions 104 and 127.  相似文献   
146.
K. Wilde    H. H. Geiger    T. Miedaner 《Plant Breeding》2006,125(3):225-230
Leaf rust (Puccinia recondita Rob. ex. Des.) is the most frequently occurring leaf disease in German winter rye (Secale cereale L.). To test the usefulness of race‐specific resistance genes, the effects of increased host diversity and complexity by producing two‐ and four‐line synthetics from inbred lines carrying different resistance genes were analysed. Thirty‐three synthetics along with two full‐sib families and one hybrid variety were tested in 17 environments in Germany under natural infections. For comparison, the parent lines of the synthetics were evaluated in 11 environments. Only two synthetics and the full‐sib families were resistant across all environments. Observed resistance levels of the synthetics were highly correlated (r = 0.83, P = 0.01) with those predicted from the parental values. Host complexity had a minor effect in two‐line synthetics only. In conclusion, the effectiveness of race‐specific leaf‐rust resistances among environments, and increasing the host complexity and diversity does not lead to a higher resistance level than that expected from the resistances of the parents.  相似文献   
147.
A collection of 111 barley landraces from the Fertile Crescent was screened for resistance to barley leaf rust in the field and under controlled conditions. Large variation was observed for disease severity under field conditions. Accessions with high resistance because of hypersensitivity were identified. Also segregation was observed in some accessions, with individual plants showing hypersensitive reactions (IT ≤ 6). Partial resistance due to a reduction of infection in spite of a compatible infection was commonly found (19%). Resistance of 12 accessions selected for their low disease severity and high IT, was shown to be due to a prolonged latency period and increased percentage of early aborted colonies not associated with host cell necrosis. A high correlation was observed between the microscopic and macroscopic components of partial resistance.  相似文献   
148.
Breeding wheat and rye for resistance to Fusarium diseases   总被引:6,自引:1,他引:6  
T. Miedaner 《Plant Breeding》1997,116(3):201-220
Fusarium culmorum and F. graminearum Groups 1 and 2 cause seedling blight, crown rot, foot rot and head blight in wheat and rye that may affect grain yield and quality for baking and feeding. This review starts with an analysis of Fusarium populations with regard to their genetic variation for aggressiveness, mycotoxin production, and isolate-by-host genotype interaction. To assess resistance in the different host growth stages, quantitative inoculation and disease assessment techniques are necessary. Based on estimated population parameters, breeding strategies are reviewed to improve Fusarium resistance in wheat and rye. Epidemiological and toxicological aspects of Fusarium resistance that are important for resistance breeding are discussed. F. culmorum and F. graminearum display large genetic variation for aggressiveness in isolate collections and in naturally occurring populations. The production of mycotoxins, especially deoxynivalenol and its derivatives, is a common trait in these populations. Significant isolate-by-host genotype interactions were not found across environments in wheat and rye. Artificial infections in the field are indispensable for improving Fusarium crown rot, foot rot and head blight resistance in wheat and rye. For a reliable disease assessment of large populations, disease severity ratings were found to be the most convenient. The differentiation of host resistance is greatly influenced by an array of nongenetic factors (macro-environment, microclimate, host growth stage, host organ) that show significant interactions with host genotype. Selection for environmentally stable resistance has to be performed in several environments under a maximum array of different infection levels. Selection in early growth stages or on one plant organ does not in most cases allow prediction of resistance in adult-plant stages or another plant organ. Significant genetic variation for resistance exists for all Fusarium-incited diseases in breeding populations of wheat and rye. The patho-systems studied displayed a prevalence of additive gene action with no consistent specific combining ability effects and thus rapid progress can be expected from recurrent selection. In wheat, intensive testing of parental genotypes allows good prediction of the mean head blight resistance after crossing. Subsequent selection during selfing generations enables the use of transgression towards resistance. In hybrid breeding of winter rye, the close correlation between foot rot resistance of inbred lines and their GCA effects implies that selection based on the lines per se should be highly effective. This is not valid for F. culmorum head blight of winter rye caused by a greater susceptibility of the inbred lines compared to their crosses. For both foot rot and head blight resistance, a high correlation between the resistance to F. graminearum and F. culmorum was found in wheat and rye. Mycotoxin accumulation occurs to a great extent in naturally and artificially infected plant stands. The correlation between resistance traits and mycotoxin contents are medium and highly dependent on the environment. Further experiments are needed to clarify whether greater resistance will lead to a correlated reduction of the mycotoxin content of the grains under natural infection.  相似文献   
149.
Summary The genetic constitution of two bread wheat accessions from the International Spring Wheat Rust Nurseries (E 5883 and E 6032) has been studied for reaction to four Indian races of stem rust. Analysis of E 5883 has revealed that for each of the races 15C, 21 and 40 a single dominant gene operates for resistance. The dominant gene against race 15C was identified as Sr6. The dominant genes for resistance against races 21 and 40 were found to be different from the genes described so far. Resistance against race 122 is controlled by a single recessive gene producing characteristically a 2 type of reaction. This gene was identified as Sr8.The resistance of E 6032 against each of the races 15C, 21 and 40 is controlled by two genes, one dominant and one recessive, which act independently. Dominant genes effective against 15C, 21 and 40 were conclusively identified as Sr6, Sr5 and Sr9b, respectively. From the correlated behaviour against races 15C and 40 as well as from the phenotypes of the resistance reactions rhe same recessive gene, undescribed so far, operates against the two races. The second recessive gene operating against race 21 was also observed to be different from those so far designated. E 6032 was, however, found to be susceptible to races 122.The presence of Sr6 both in E 5883 and E 6032 against race 15C was further confirmed through F2 and F3 segregation data.  相似文献   
150.
R. E. Niks 《Euphytica》1987,36(3):725-731
Summary Early stages of the infection process of Puccinia hordei isolate 1.2.1 and of a P. recondita f.sp. tritici isolate were studied on adult plants of four barley lines and one wheat line. Two of the barley lines are extremely susceptible to P. hordei, the other two have a very high level of partial resistance.A histological study based on a trypan blue staining indicated that stoma penetration by P. hordei isolate 1.2.1 was equally successful on the susceptible as on the partially resistant adult barley plants. Abortion of substomatal vesicles was rare in all lines. These results do not support a hypothesis that mechanisms of partial resistance in adult plants differ from those in seedlings by a substantial abortive stoma penetration.Also in the nonhost combinations wheat-P. hordei and barley-P. recondita f.sp. tritici inhibition of stoma penetration and of substomatal vesicle development appears to play a biologically insignificant role in adult plants.The proportion of stoma penetration on the leaf sheaths of two of the barley lines was as high as on the leaf blades of the flag leaf and the leaf below the flag leaf. There was no evidence for stomatal exclusion as a crucial factor in the relatively low infectibility of leaf sheaths to leaf-blade specialized rust species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号