首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16252篇
  免费   838篇
  国内免费   1281篇
林业   983篇
农学   771篇
基础科学   502篇
  8943篇
综合类   5240篇
农作物   733篇
水产渔业   11篇
畜牧兽医   671篇
园艺   367篇
植物保护   150篇
  2024年   122篇
  2023年   281篇
  2022年   370篇
  2021年   417篇
  2020年   375篇
  2019年   435篇
  2018年   335篇
  2017年   609篇
  2016年   758篇
  2015年   729篇
  2014年   863篇
  2013年   877篇
  2012年   1046篇
  2011年   1379篇
  2010年   1029篇
  2009年   1160篇
  2008年   1131篇
  2007年   1151篇
  2006年   1002篇
  2005年   817篇
  2004年   556篇
  2003年   474篇
  2002年   283篇
  2001年   233篇
  2000年   229篇
  1999年   224篇
  1998年   199篇
  1997年   184篇
  1996年   194篇
  1995年   161篇
  1994年   138篇
  1993年   138篇
  1992年   114篇
  1991年   77篇
  1990年   117篇
  1989年   56篇
  1988年   45篇
  1987年   42篇
  1986年   13篇
  1985年   7篇
  1963年   1篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
21.
根据不同退化程度草原和不同开垦年限农田土壤137Cs放射强度分析结果表明:与轻度退化草原相比,中度退化和重度退化中的137Cs放射强度分别下降了21%和52%。草原土壤开垦后,137Cs放射强度明显下降,开垦7年、15年、33年后,137Cs的放射强度分别只有轻度退化草原的37%、31%和26%。相关分析表明,伴随着土壤侵蚀的发生,土壤有机质含量、全N含量以及阳离子交换量下降。137Cs放射强度与土壤有机碳、土壤全N、交换性K和阳离子交换量呈极显著的正相关。  相似文献   
22.
不同轮作序列对旱地胡麻土壤有机碳稳定性的影响   总被引:1,自引:0,他引:1  
为了探索陇中黄土高原半干旱丘陵沟壑区胡麻轮作序列对土壤碳库的影响,2012-2016年通过4年定位试验,以连作为对照,研究了不同胡麻频率下的轮作序列(F:休闲;PWFW:25%Flax、马铃薯-小麦-胡麻-小麦;WFWP:25%Flax、小麦-胡麻-小麦-马铃薯;FWPF:50%Flax、胡麻-小麦-马铃薯-胡麻;WPFF:50%Flax、小麦-马铃薯-胡麻-胡麻;FFFF:100%Flax、胡麻-胡麻-胡麻-胡麻)对土壤团聚体、总有机碳(TOC)、土壤颗粒有机碳(POC)、土壤微生物碳(MBC)和氮(MBN)的影响。结果表明,休闲、不同轮作序列和低胡麻频率显著增加了030 cm土层<0.25 mm粒级的土壤团聚体含量、TOC和POC含量,而随胡麻频率的增加三者的含量呈下降趋势。其中,25%Flax处理下土壤团聚体含量较播前和休闲处理分别显著增加了2.02%4.04%和9.56%11.73%;土壤有机碳(SOC)较连作显著增加5.95%7.48%。50%Flax处理下胡麻位置对土壤SOC影响显著,且轮作(FWPF)显著高于连作(WPFF)。060 cm土层土壤SOC含量表现为休闲>播前≈25%Flax>50%Flax>100%Flax。与连作相比,轮作显著提高了010 cm土层土壤TOC和POC含量,呈现表层富集现象。土壤POC含量表现为25%Flax≈休闲>50%Flax>100%Flax。此外,轮作换茬显著增加了土壤MBC含量,且随着胡麻频率的增加,030 cm土层土壤MBC含量逐渐降低。与播前、休闲、轮作相比,连作显著降低土壤微生物碳氮比,50%Flax(WPFF)轮作序列和土层深度对土壤有机碳和微生物量的互作效应显著。综合来看,休闲可以显著改善土壤理化性状,25%胡麻频率的轮作序列利于保持土壤团聚体稳定性,增加土壤TOC、SOC和POC含量,而50%Flax轮作序列(WPFF)能够提高土壤微生物量和微生物碳氮比。表明25%胡麻频率的轮作序列均可维持土壤有机碳的稳定性,是旱地胡麻比较理想的轮作序列。  相似文献   
23.
《Veterinary parasitology》2015,207(1-2):64-71
Syngamus trachea is a pathogenic tracheal nematode that causes syngamiasis in wild and game birds, especially when birds are managed at high densities. Despite its pathogenic nature, very little is known about its epidemiology and relationship with ambient temperature and humidity. The spatial and temporal modelling of disease was undertaken on two pheasant estates within the South West of England from April 2014 to August 2014. Significant differences between the mean numbers of eggs per gram of soil were identified between pens at both site 1 and site 2 but did not differ significantly between sites. Egg abundance was significantly associated with soil moisture content, with greater egg survival between years in pens with higher average volumetric soil moisture content. Previous years stocking density and pen age were also associated with greater egg survival between years with more eggs being recovered in pens with greater stocking densities, and pens that had been sited longer. The greatest model to explain the variation in the numbers of eggs per gram of soil per pen was a combination of soil moisture content, stocking density and pen age.Larval recovery differed significantly between sites. Larval abundance was significantly and positively associated with temperature and relative humidity at site 1. Similarly, temperature and humidity were also positively and significantly associated with larval abundance at site 2. Rainfall did not influence larval recovery at either site 1 or site 2. The model with the greatest ability to explain larval abundance at both sites, was a combination of temperature, humidity and rainfall. Infection status (positive faecal egg counts) was significantly and positively associated with larval abundance at both sites, but rainfall was only positively associated at site 1. Temperature and humidity were positively associated with infection status at site 2, but not at site 1. The present study highlights the influence of climatic variables on both egg survival and larval abundance, and could therefore be used to develop more targeted treatment strategies around periods of higher disease risk. The frequent use of release pens is a clear factor in the epidemiology of syngamiasis, and it is recommended that pens be rested and/or rotated in order to reduce infection pressure in subsequent flocks.  相似文献   
24.
黄土高原人工灌草系统不同立地条件土壤种子库特征   总被引:2,自引:0,他引:2  
本研究通过野外调查取样与室内试验相结合,连续两年对黄土高原人工灌草系统不同坡向、坡位进行取样,以期对该区土壤种子库的物种组成、密度特征及其物种多样性进行初步了解。研究结果表明:该人工灌草生态系统土壤种子库共有9科,15种,其组成因坡位、坡向以及年份而异;坡向、坡位均显著影响土壤种子库物种多样性指数、丰富度指数与土壤种子库密度(P<0.05),土壤种子库密度为3 218~5 492粒·m-2,总体呈现为阴坡显著高于阳坡(P<0.05),下坡位显著高于上坡位(P<0.05);坡位和坡向均对物种均匀性系数无显著影响;年份对土壤种子库无显著影响。上述研究可为黄土高原人工灌草系统的可持续利用与恢复提供参考依据。  相似文献   
25.
In Central Europe, various plant species including large-grain legumes and their mixtures are grown as catch crops, particularly between grains harvested early and subsequent summer crops. This article investigates the question of how soil structure in the topsoil is influenced when catch cropping with large-grain legumes (experimental factor A: without catch crop, with catch crop) under different ploughless tillage conditions during catch crop seeding (experimental factor B: deep tillage/25–30 cm, shallow tillage/8–10 cm). Five one-year trials were performed using standard machinery at various sites in Germany. Soil core samples extracted from the topsoil in the spring after catch crop cultivation served to identify air capacity, saturated hydraulic conductivity and precompression stress. The above-ground and below-ground biomass yields of the catch crops were also determined at most of the sites. In addition, the soil compaction risk for the working steps in the experiments was calculated using the REPRO model.The dry matter yield of the catch crops varied considerably between the individual trial sites and years. In particular, high levels of dry matter were able to form in the case of early seeding and a sufficient supply of precipitation. The soil structure was only rarely affected positively by catch crop cultivation, and catch crops did not contribute in the short term to loosening already compacted topsoils. In contrast, mechanical soil stresses caused by driving over the ground and additional working steps used in cultivating catch crops often led to lower air capacity in these treatments. This is consistent with the soil compaction risks calculated using the REPRO model, which were higher in the treatments with catch cropping. Catch crop cultivation also only resulted in improved mechanical stability at one location. The positive effect of deep ploughless tillage on air capacity and saturated hydraulic conductivity, however, became more clearly evident regardless of catch crop cultivation. In order for catch crop cultivation with large-grain legumes to be able to have a favourable impact on soil structure, it is therefore important that cultivating them does not result in any new soil compaction. In the conditions evaluated, deep tillage was more effective at loosening compacted topsoil than growing catch crops.  相似文献   
26.
Benefits of organic farming on soil fauna have been widely observed and this has led to consider organic farming as a potential approach to reduce the environmental impact of conventional agriculture. However, there is still little evidence from field conditions about direct benefits of organic agriculture on soil ecosystem functioning. Hence, the aims of this study were to compare the effect of organic farming versus conventional farming on litter decomposition and to study how this process is affected by soil meso- and macrofauna abundances. Systems studied were: (1) organic farming with conventional tillage (ORG), (2) conventional farming with conventional tillage (CT), (3) conventional farming under no-tillage (NT), and (4) natural grassland as control system (GR). Decomposition was determined under field conditions by measuring weight loss in litterbags. Soil meso- and macrofauna contribution on decomposition was evaluated both by different mesh sizes and by assessing their abundances in the soil. Litter decomposition was always significantly higher after 9 and 12 months in ORG than in CT and NT (from 2 to 5 times in average), regardless decomposer community composition and litter type. Besides, mesofauna, macrofauna and earthworm abundances were significantly higher in ORG than in NT and CT (from 1.6 to 3.8, 1.7 to 2.3 and 16 to 25 times in average, respectively for each group). These results are especially relevant firstly because the positive effect of ORG in a key soil process has been proved under field conditions, being the first direct evidence that organic farming enhances the decomposition process. And secondly because the extensive organic system analyzed here did not include several practices which have been recognized as particularly positive for soil biota (e.g. manure use, low tillage intensity and high crop diversity). So, this research suggests that even when those practices are not applied, the non-use of agrochemicals is enough to produce positive changes in soil fauna and so in decomposition dynamics. Therefore, the adoption of organic system in an extensive way can also be suggested to farmers in order to improve ecosystem functioning and consequently to achieve better soil conditions for crop production.  相似文献   
27.
By burrowing galleries and producing casts, earthworms are constantly changing the structure and properties of the soils in which they are living. These changes modify the costs and benefits for earthworms to stay in the environment they modify. In this paper, we measured experimentally how dispersal behaviour of endogeic and anecic earthworms responds to the cumulative changes they made in soil characteristics. The influence of earthworm activities on dispersal was studied in standardised mesocosms by comparing the influence of soils modified or not modified by earthworm activities on earthworm dispersal rates.The cumulative use of the soil by the earthworms strongly modified soil physical properties. The height of the soil decreased over time and the amount of aggregates smaller than 2 mm decreased in contrast to aggregates larger than 5 mm that increased. We found that: (i) earthworm activities significantly modified soil physical properties (such as bulk density, soil strength and soil aggregation) and decreased significantly the dispersal rates of the endogeic species, whatever the species that modified the soil; (ii) the decreasing in the dispersal proportion of the endogeic species suggests that the cost of engineering activities may be higher than the one of dispersal; (iii) the dispersal of the anecic species appeared to be not influenced by its own activities (intra-specific influences) or by the activities of the endogeic species (inter-specific influences). Overall these results suggest that the endogeic species is involved in a process of niche construction, which evolved jointly with its dispersal strategy.  相似文献   
28.
Many studies showed that permafrost has profound influence on alpine ecosystem. However, former researches were mainly focused on typical points by temporal scales. There were few studies about the correlation between vegetation characteristics and different altitudes covering a large region in spatial pattern, especially in transitional permafrost(TP). There were continuous permafrost(CP) discontinuous permafrost(DCP) and seasonal frozen ground(SFG) in this study region. The types of permafrost changed from SFG to DCP, and finally become CP as the altitudes of Xidatan increase. In this paper, 112 845 points interpreted by HJ1-B(environment and disaster monitoring and prediction small satellite constellation), vegetation investigation points, thawing layer thickness research sites, ground temperature and water content observation plots were used to examine the spatial pattern of vegetation which were located in different altitudes in Xidatan, a typical TP region, in Qinghai-Tibetan Plateau. Vegetation characteristics, soil moisture content(SMC) and thaw depths were collected in 15 August to 25 August2012. Characteristics of vegetation were mainly represented by fractional vegetation cover(FVC) derived from the normalized difference vegetation index(NDVI), as well as above ground biomass(AGB). In this paper, we analyzed that the distinction of vegetation characteristics in each range through statistics data. These ranges were divided by varied altitudes. For examples, the ranges were divided into 50 m or 100 m. In this study we use a large area plots method to further discuss the relationship between the features of vegetation and the different regions of permafrost based on altitudes shifts in Xidatan. A diagram described the vegetation characteristics variability with rising altitudes in transitional permafrost region was drawn in this paper. Our results illustrated the FVCs first increased in SFG region and then decreased in DCP zone slowly, and in CP region FVCs soared then dropped dramatically. With the altitudes increased, the curve of FVCs indicated a parabolic distribution except a little difference in the first 200 m range.  相似文献   
29.
Soil compaction, especially subsoil compaction, in agricultural fields has increased due to widespread use of heavy machines and intensification of vehicular traffic. Subsoil compaction changes the relative distribution of roots between soil layers and may restrict root development to the upper part of the soil profile, limiting water and mineral availability. This study investigated the direct effects of inter-row subsoiling, biological subsoiling and a combination of these two methods on soil penetration resistance, root length density, nitrogen uptake and yield. In field experiments with potatoes in 2013 and 2014, inter-row subsoiling (subsoiler) and biological subsoiling (preceding crops) were studied as two potential methods to reduce soil penetration resistance. Inter-row subsoiling was carried out post planting and the preceding crops were established one year, or in one case two years, prior to planting. Soil resistance was determined with a penetrometer three weeks after the potatoes were planted and root length density was measured after soil core sampling 2 months after emergence. Nitrogen uptake was determined in haulm (at haulm killing) and tubers (at harvest). Inter-row subsoiling had the greatest effect on soil penetration resistance, whereas biological subsoiling showed no effects. Root length density (RDL) in the combined treatment was higher than in the separate inter-row and biological subsoiling treatments and the control, whereas for the separate inter-row and biological subsoiling treatments, RLD was higher than in the control. Nitrogen uptake increased with inter-row subsoiling and was significantly higher than in the biological subsoiling and control treatments. However, in these experiments with a good supply of nutrients and water, no yield differences between any treatments were observed.  相似文献   
30.
The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to quantify and characterise the labile and stable forms of SOM. Our objective in this study was to evaluate SOM under widely contrasting management regimes to determine whether the variation in chemical composition and resistance to pyrolysis observed for various constituent C fractions could be related to their resistance to decomposition. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were physically fractionated (sand: 2000-50 μm; silt: 50-5 μm, and clay: <5 μm). Biodegradability of the SOM in size fractions and whole soils was assessed in a laboratory mineralization study. Thermal stability was determined by analytical pyrolysis using a Rock-Eval pyrolyser, and chemical composition was characterized by X-ray absorption near-edge structure (XANES) spectroscopy at the C and N K-edges. Relative to the pasture soil, SOM in the arable and fallow soils declined by 30% and 40%, respectively. The mineralization bioassay showed that SOM in whole soil and soil fractions under fallow was less susceptible to biodegradation than that in other management practices. The SOM in the sand fraction was significantly more biodegradable than that in the silt or clay fractions. Analysis by XANES showed a proportional increase in carboxylates and a reduction in amides (protein) and aromatics in the fallow whole soil compared to the pasture and arable soils. Moreover, protein depletion was greatest in the sand fraction of the fallow soil. Sand fractions in fallow and arable soils were, however, relatively enriched in plant-derived phenols, aromatics, and carboxylates compared to the sand fraction of pasture soils. Analytical pyrolysis showed distinct differences in the thermal stability of SOM among the whole soil and their size fractions; it also showed that the loss of SOM generally involved preferential degradation of H-rich compounds. The temperature at which half of the C was pyrolyzed was strongly correlated with mineralizable C, providing good evidence for a link between the biological and thermal stability of SOM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号