首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   8篇
  国内免费   11篇
农学   169篇
  19篇
综合类   21篇
农作物   12篇
畜牧兽医   15篇
园艺   1篇
植物保护   4篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   1篇
  2015年   5篇
  2013年   6篇
  2012年   7篇
  2011年   8篇
  2010年   6篇
  2009年   11篇
  2008年   4篇
  2007年   7篇
  2006年   11篇
  2005年   7篇
  2004年   6篇
  2003年   6篇
  2002年   7篇
  2001年   8篇
  2000年   5篇
  1999年   8篇
  1998年   10篇
  1997年   4篇
  1996年   14篇
  1995年   12篇
  1994年   5篇
  1993年   6篇
  1992年   10篇
  1991年   12篇
  1990年   8篇
  1989年   4篇
  1988年   9篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有241条查询结果,搜索用时 218 毫秒
61.
Fusarium head blight (FHB), primarily caused by Fusarium graminearum in North America can result in significant losses in the yield and quality of wheat (Triticum aestivum L). Resistance sources have been largely limited to Chinese germplasm and, in particular, Sumai 3 or its derivatives. In recent years, resistance has been identified in Europe. Previous studies using the wheat line ‘Bizel’, developed in France, have shown that it has resistance to Fusarium head blight. Pedigree information shows that one of its progenitors is rye. This experiment was conducted to determine if ‘Bizel’ has rye chromatin, with the goal of developing a strategy for mapping FHB resistance genes. Two methods based on repetitive DNA sequences specific to rye were implemented. With both approaches, it was demonstrated that ‘Bizel’ does not contain rye chromatin. Consequently, wheat SSRs can be used to map ‘Bizel’ resistance genes for FHB.  相似文献   
62.
G. Melz    R. Schlegel  J. Sybenga 《Plant Breeding》1988,100(3):169-172
The original identification of the chromosomes involved in each of the lines of the act of primary trisomics of winter rye variety ‘Esto’ does not correspond with recent results of gene localization studies. Using known morphological marker genes, N-banding and test crossing with the standard translocation tester set, a more precise identification was possible. In the nomenclature of the Triticinae, the lines can be designated as follows: A = 7R; B = 5R; C = 2R; D = 3R; E = 4R; F = 6R; G = 1R.  相似文献   
63.
Summary Fertilization and early seed development was studied in the variety Chinese Spring of common wheat (Triticum aestivum L.) after pollination with rye (Secale cereale L.) and selfing, and in the common wheat variety Hope after selfing. In all three combinations the first pollen tube reached the micropyle in about 40 min after pollination. When pollinated with rye the migration of the sperm nuclei to the egg cell and the polar nuclei was delayed by about an hour. In the subsequent development until 72 hours after pollination the average cellular and nuclear doubling times of embryo and endosperm were about 16 and 8 hours for the interspecific combination. 18 and 9 hours for Chinese Spring selfed and 20 and 12 hours for Hope selfed.  相似文献   
64.
Gitta Oettler 《Euphytica》1984,33(1):233-239
Summary One hexaploid wheat cultivar (Triticum aestivem) and two tetraploid wheat lines (T. durum) were crossed with seventeen inbred lines of rye (Secale cereale). Seed set, degree of hybrid embryo differentiation at the time of excision for in vitro culture and recovery of amphihaploid plantlets from various embryo categories were studied. Degree of embryo differentiation was predominantly determined by maternal wheats, paternal rye genotypes appearing to be of minor importance. T. aestivum x rye hybrid embryos were superior to those produced from T. durum for degree of differentiation. The proportion of plantlets developing from differentiated embryos was high for all wheat parents, whereas undifferentiated embryos were mostly unsuitable for plantlet production. The results revealed that cross-incompatibility in hexaploid wheat x rye crosses was due to failure of fertilization, while in tetraploid wheat x rye crosses it was caused by lack of embryo differentiation. Correlation analyses showed that seed set provided a criterion to predict the amphihaploid plantlets to be expected from a particular wheat x rye combination.  相似文献   
65.
Summary Expression of 17 rye traits in 24 bread wheat x rye and 8 durum wheat x rye crosses was studied, using a self-compatible, homozygous, dwarf rye. Rye showed epistasis for hairiness on the peduncle in all the crosses of Triticum aestivum and T. durum wheats with rye. Dark greenness of leaves of rye was expressed in all the durum wheat x rye and in some of the bread wheat x rye crosses. Similarly, absence of auricle pubescence, a rye trait, was expressed in most of the durum wheat x rye crosses but not in the bread wheat x rye crosses, indicating the presence of inhibitors for these traits frequently on the D genome and rarely on the A and/or B genome of wheat. Most of the wide hybrids resembled rye fully or partially for intense waxy bloom on the leaf-sheath and for the absence of basal underdeveloped spikelets. Similarly, most of the amphihaploids resembled rye for the anthocyanin in the coleoptile, stem and node. The presence of some inhibitors on A and/or B genome of wheat was indicated in some of the wheat genotypes for the expression of rye traits viz. intense waxy bloom, anthocyanin in node and absence of basal underdeveloped spikelets. Enhancement in the level of expression of the intensity and length of bristles on the mid-rib of the glume of the hybrids might be due to wheat-rye interaction. Less number of florets/spikelet as in rye showed variable expression in different wheat backgrounds. Some other rye traits like absence of auricles, terminal spikelet and glume-awn were not expressed in the wheat background. The expression of some of the rye genes might have been influenced by their interaction with Triticum cytoplasm and/or the environment.  相似文献   
66.
Translocated chromosomes T1BL⋅1RS and T1AL⋅1RS have been widely used in many wheat (Triticum aestivum L.) breeding programs to develop high yielding cultivars. The objective of this study was to evaluate the heterotic effects of T1BL⋅1RS + T1AL⋅1RS, T1BL⋅1RS, and T1AL⋅1RS on yield and yield components of hybrid wheat grown under adequate moisture regimes. Thirteen hybrid wheats and seven parents with different chromosome constitutions relative to T1AL⋅1RS and T1BL⋅1RS were evaluated in a randomized complete block design. Variable performance was observed among the hybrids tested. Two of the three hybrids with T1BL⋅1RS + T1AL⋅1RS, produced 25.26% and 44.64% more grain than the hybrids with only T1BL⋅1RS. This was due to increased biomass, harvest index (HI) and spike density. However, the combination of these two translocations resulted in reduced kernels/spike, spikelets/spike and spike length compared to the T1BL⋅1R Stranslocation alone. When comparing closely related parents, the parent with T1AL⋅1RS produced 23.51% more grain yield than the non-translocated parent. The presence of T1AL⋅1RS resulted in 10.37% heterotic advantage for yield due to increased biomass, KW, and spike density. When the two wheat-rye translocated chromosomes are present in the same hybrid, T1AL⋅1RS seems to have a positive effect on yield through spike density and HI, but masks the effects of T1BL⋅1RS for some agronomic traits. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
67.
A synthetic winter rye population was produced with two race-specific powdery mildew resistance genes, one dominant (Rm1) and the other (rm2) recessive, each at a frequency of about 0.50. The population was advanced by open-pollination in an isolated plot under mildew-free conditions for eight years. Samples of generations Syn-0 through Syn-7 were inoculated in the laboratory with two mildew isolates, one avirulent to either resistance gene, the other virulent to Rm1 and avirulent to rm2, to discriminate resistant and susceptible phenotypes. From the proportions of resistant plants, frequencies of Rm1 and rm2 were calculated and the fitness of carriers of resistance alleles was estimated in relation to carriers of susceptibility alleles at the two loci using continuous models and linear regression analyses. Frequencies of the two resistance genes oscillated only weakly over the eight generations. Coefficients of selection against Rm1-and rm2rm2 genotypes were –0.04 and –0.02, respectively, and not significantly different from zero. Thus the two resistance genes were selectively neutral. It is concluded that pyramiding of major powdery mildew resistance genes in rye varieties should not reduce their yield potential in the absence of mildew.  相似文献   
68.
Summary The Sr27 translocation in WRT238 was found to consist of chromosome arms 3RS of rye and 3AS of common wheat. An attempt was made to purposely produce compensating translocations having 3RS and a wheat homoeologous group 3L arm. To achieve this, plants, double monosomic for 3R and a wheat homoeologous group 3 chromosome, were irradiated (7.5 Gy gamma rays) or left untreated before being used to pollinate stem rust susceptible testers. Segregation for stem rust resistance was studied to identify F2 families with Sr27-carrying translocated chromosomes, these were confirmed by means of C-banding. Compensating translocations 3RS3AL and 3RS3BL) were obtained readily and at similar frequencies from untreated and irradiated plants (respectively, 7.2% and 9.3%). Both translocation types have impaired transmission and segregate approximately 3: 2 (present: absent) in the F2.  相似文献   
69.
Anther Culture in Rye: Improved Plant Regeneration Using Modified MS-Media   总被引:1,自引:0,他引:1  
G. Daniel 《Plant Breeding》1993,110(3):259-261
The use of androgenetic doubled haploids in rye breeding is still limited by low regeneration rates. In this study we tested the influence of two modified MS-media on the number of reacting anthers and on plant regeneration. Picloram and 2,4-D were used as auxin components in the induction media. The highest induction rates (reacting anthers per 100 cultivated anthers) and the highest regeneration rates (number of green plants per 100 cultivated anthers) were reached on a modified MS-medium containing Picloram as auxin source, regardless of the donor plant material. The comparison of the results obtained with the single cross ‘SC 35’ which contains genes of Secale vavilovii and the true Secale cereale donor forms clearly show the genotypic influence of donor plant material on induction and regeneration ability.  相似文献   
70.
B. S. Jalani  J. P. Moss 《Euphytica》1981,30(1):105-112
Summary Different wheat genotypes (T. aestivum) were crossed with rye to ascertain the site or sites of manifestation of the crossability genes, Kr 1 and Kr 2. By using fluorescence microscopy, it was found that the order of increasing proportion of wheat micropyles containing pollen tubes is strongly correlated with the levels of crossability with rye. High crossable genotypes have more micropyles containing pollen tubes than those of the low crossable ones. Most of the inhibition or retardation of pollen tubes occurred between the style base and top of the embryo sac, expecially with the low crossable genotypes where both Kr-genes are present. The results also indicate that Kr 1 is a greater inhibitor than Kr 2. Seed set is also highly correlated with the number or proportion of micropyles having pollen tubes. Alternate pollinations seem to support the view that rye pollen tubes do not reach the micropyles of the low crossable genotypes, and hence when repollinated with wheat selfed seeds are produced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号