首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   13篇
  国内免费   16篇
林业   20篇
农学   6篇
基础科学   15篇
  122篇
综合类   51篇
农作物   10篇
水产渔业   1篇
畜牧兽医   6篇
园艺   4篇
植物保护   2篇
  2024年   3篇
  2023年   2篇
  2022年   1篇
  2021年   11篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   7篇
  2014年   7篇
  2013年   17篇
  2012年   17篇
  2011年   19篇
  2010年   10篇
  2009年   13篇
  2008年   18篇
  2007年   11篇
  2006年   17篇
  2005年   15篇
  2004年   4篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  2000年   9篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1989年   3篇
  1988年   1篇
排序方式: 共有237条查询结果,搜索用时 15 毫秒
41.
在不同浸出条件下铅离子污染土的固化试验研究   总被引:1,自引:0,他引:1  
利用水泥来固化/稳定污染土中的重金属离子是一种常用的处置方法。着重讨论了添加蒙脱土后的复合固化剂对铅离子的固化效果。设计了不同蒙脱土和水泥掺量的12组固化剂,通过污染土制备、压实成型、强度测试和溶出试验4个步骤来获得试验数据。其中在溶出试验过程中,设定了4种不同的溶出条件以进行对比分析。结果表明:即使已经远远满足TCLP条件的固化产物,但在更加恶劣的试验条件下,浸出液的浓度非常高,远远达不到标准,所以在固化应用于实际工程时,根据条件不同,要考虑到更加恶劣的条件。  相似文献   
42.
采用硫酸作为酸浸出剂,考察了浸出时间、酸浓度和浸出温度对电镀污泥中重金属Zn、Cr浸出效果的影响,并运用Avrami方程拟合Zn、Cr的浸出动力学。结果表明:硫酸浸出Zn、Cr的最适浸出时间、酸浓度、温度均为4h、3mol/L、20℃。Zn、Cr的浸出过程均可用Avrami方程进行很好的拟合,其浸出反应的表观活化能分别为3.58和3.06k J/mol,即两者的浸出过程均是扩散控制的,为工业规模的硫酸浸出电镀污泥中Zn、Cr提供理论参考。  相似文献   
43.
单株定量施肥方式下烟田土壤NO3-N淋溶特征研究   总被引:2,自引:1,他引:2  
2004年在湖南浏阳烟区烟稻轮作田块上,研究了单株定量施肥方式下NO3-NN在土壤中淋溶损失的规律。结果表明:烟苗大田移栽后1~4周内NO3-N的淋溶较多,第4周出现高峰,5~7周NO3-NN淋溶量相对较少,12周以后又呈上升趋势;NO3-N淋溶量与降水量存在正相关关系,但不显著;常规施肥条件下比单株定量施肥条件下NO3-NN含量更易受降水量的影响;常规施肥下,NO3-N含量在现蕾期以前,60~90cm土层有一个浓度升高区,现蕾期以后,浓度升高区消失;而在单株定量施肥下,NO3-N含量始终由表层向下部土层递减;NO3-N表聚现象,常规施肥较单株定量施肥方式明显。因此,单株定量施肥法为减少NO3-NN淋溶损失提供了可能。  相似文献   
44.
施氮量对潮土区冬小麦-夏玉米轮作农田氮磷淋溶的影响   总被引:1,自引:0,他引:1  
潮土是我国华北地区主要土壤类型之一,潮土区是我国冬小麦-夏玉米作物的主要产区,研究不同施氮量潮土氮磷淋溶特征对于指导区域农田面源污染防控具有重要意义。本研究设置3个施肥处理,即传统施氮(CON)、优化施氮(OPT)和优化再减氮(OPTJ),利用田间渗漏池法,研究潮土冬小麦-夏玉米轮作农田硝态氮及总磷淋溶特征。结果表明:2016—2018年,冬小麦-夏玉米轮作周年不同施肥处理90cm土层年淋溶水量79.0~102.5 mm,不同淋溶事件间土壤淋溶液硝态氮浓度波动较大, CON、OPT和OPTJ处理单次淋溶事件硝态氮浓度分别为18.9~208.7(平均为72.7) mg·L~(-1)、9.0~99.2 (平均为33.8) mg·L~(-1)、4.7~55.5 (平均为15.4) mg·L~(-1)。本研究区域冬小麦-夏玉米轮作模式的氮素淋溶风险较高,磷素淋溶风险较低。传统施氮处理(CON)下农田硝态氮的平均淋溶量和表观淋失系数分别为66.4 kg·hm~(-2)和10.3%,而总磷(TP)为0.06 kg·hm~(-2)和0.04%。氮肥减施会显著降低氮素淋失,OPT和OPTJ处理的氮素淋溶减排率可达56.3%和78.9%。两个年度CON、OPT和OPTJ处理硝态氮平均表观淋失系数分别为10.3%、6.2%和4.9%,随着施氮量的增加,硝态氮淋失系数动态增加。氮淋溶具有较大的年际变化,降雨量高的2018年比降雨少的2017年硝态氮淋溶量多57.0%。两个年度CON、OPT和OPTJ处理总磷平均淋溶量分别为0.06 kg·hm~(-2)、0.06 kg·hm~(-2)和0.08 kg·hm~(-2)。适量减施氮肥会增加作物产量, OPT处理的作物产量是CON处理的1.08倍。然而,过量减施则会带来减产风险, OPTJ处理氮肥减施56%,作物产量比CON处理降低2.0%~8.1%。总之,潮土区农田硝态氮淋溶风险较大,适量减施氮肥能够在保证作物产量的基础上显著降低氮素淋失损失。  相似文献   
45.
浸提时间对污泥中重金属浸出的影响   总被引:2,自引:0,他引:2  
[目的]探讨污泥中重金属的释放动力学特性。[方法]采集了我国南京某污水厂的剩余污泥,应用固体废物浸出毒性的浸出方法,研究了浸提时间对污泥中重金属浸出的影响。[结果]污泥中重金属在水溶液中的浸出存在明显的吸附-解吸(释放)的动态平衡过程。污泥中重金属种类的最大浸出浓度因重金属种类的不同而存在较大差异,其中,Cr、Cu、Fe、Ni和Zn的最大浸出浓度均出现在第8小时,Mn的则出现在第18小时左右,而Mo虽然在第8小时后的浸出浓度变化渐趋缓慢,直到第24小时时仍未达到其最高浸出浓度。[结论]浸提时间对污泥中重金属的浸出影响显著,污泥具有较高含量的有机质、氮和磷等营养元素,其潜在的农业利用价值较高。  相似文献   
46.
Different leaching media composed of watersoluble extracts from Sakhalin fi r, Japanese cedar, and Japanese larch heartwoods and of taxifolin were used to characterize leaching of the C12 and C14 homologues of benzalkonium chloride from treated wood. The leaching medium of Sakhalin fi r extract moderately accelerated the leaching rates of the two homologues. Japanese cedar extract accelerated the leaching of the C12 homologue at a similar rate and that of the C14 homologue at a higher rate. Japanese larch extract remarkably accelerated the leaching rates of both homologues, particularly that of the C14 homologue. Thus, the leaching rate of the C14 homologue was higher than that of the C12 homologue with the Japanese cedar and larch extracts. The media of taxifolin, a major phenolic extractive of Japanese larch, preferentially accelerated the leaching rate of the C14 homologue. The amounts of phenolic compounds in the different leaching media were in the following order: Japanese larch > Japanese cedar > Sakhalin fi r. These results indicate a relationship between the amount of phenolic compounds and the leaching rates of the two homologues.  相似文献   
47.
Tillage, mineralization and leaching: phosphate   总被引:2,自引:0,他引:2  
Phosphate is usually the limiting nutrient for the formation of algal blooms in freshwater bodies, so tillage practices must minimize phosphate losses by leaching and surface run-off from cultivated land. Mineral soils usually contain 30–70% of their phosphate in organic forms, and both organic and inorganic phosphate are found in the soil solution. Some organic phosphates, notably the inositol phosphates, are as strongly sorbed by soil as inorganic phosphates, and this decreases their susceptibility to mineralization. The strength with which both categories are sorbed lessens the risk of their being leached as solutes but makes it more likely that they will be carried from the soil on colloidal or particulate matter, and the greatest losses of phosphate from the soil usually occur by surface run-off and erosion. Recent studies at Rothamsted have, however, shown substantial concentrations of phosphate in drainage from plots that have long received more phosphate as fertilizer than is removed in crops. These losses probably occurred because preferential water flow carried the phosphate rapidly from the surface soil to the field drains. For lessening losses of phosphate by leaching and run-off, the prime requirement of tillage is that it should encourage flows of water through the soil that help it to retain phosphate. Primary and secondary tillage should ensure that the surface roughness and porosity of the top-soil encourage the flow of water into the soil matrix where it will move relatively slowly and allow phosphate to be sorbed, thereby avoiding problems from run-off and preferential flow. Inversion tillage can be useful for lessening the loss of phosphate by run-off and erosion. Secondary tillage could be used to decrease the size of the aggregates and increase the surface area for sorption. Although tillage will increase the mineralization of organic phosphate, pulses of mineralization are unlikely to be so rapid or to lead to such large losses as with nitrate. The strength with which phosphate is sorbed also lessens the problem. As with nitrate, the key to managing phosphate is basically good husbandry.  相似文献   
48.
<正> Ningxia Agroreclamation Bureau was set up in 1950. Before reclamation,48% of landis saline--alkali swamp soil, 35% slight sierozem, 13% sandy soil. In the early days of recla-mation, eight unfavorable factors exist in farmlands, i. e. high underground water table (0.5--1.0m).mineralization of underground water (5--36g/l).soil salinity (0.5--10%). pH  相似文献   
49.
Potassium (K) leaching is affected by soil texture and available K, among other factors. In this experiment, effects of soil texture and K availability on K distribution were studied in the presence of roots, with no excess water. Soils from two 6-year field experiments on a sandy clay loam and a clay soil fertilized yearly with 0, 60, 120, and 180 kg ha?1 of K2O were accommodated in pots that received 90 kg ha?1 of K2O. Soybean was grown up to its full bloom (R2). Under field conditions, K leaching below the arable layer increased with K rates, but the effect was less noticeable in the clay soil. Potassium leaching in a sandy clay loam soil was related to soil K contents from prior fertilizations. With no excess water, in the presence of soybean roots, K distribution in the profile was significant in the lighter textured soil but was not apparent on the heavier textured soil.  相似文献   
50.
A field study was conducted to investigate the fate of 15N-labelled nitrate applied at 20 kg N ha−1 in a wet summer to microplots installed in areas under different residue management regimes in second-rotation hoop pine (Araucaria cunninghamii) plantations aged 1–3 years in south-east Queensland, Australia. PVC microplots of 235 mm diameter and 300 mm long were driven into 250 mm soil. There were three replications of each of eight treatments. These were areas just under and between 1-year-old windrows (ca. 2–3 m in width) of harvesting residues spaced 15 m apart, and with and without incorporated foliage residues (20 t DM ha−1); the areas just under and between 2- or 3-year-old windrows spaced 10 m apart. Only 7–29% of the added 15N was recovered from the top 750 mm of the soil profile with the leaching loss estimated to be 70–86% over the 34-day period. The 15N loss via denitrification was 3.7–6.3% by directly measuring the 15N gases emitted. The microplots with the incorporated residues at the 1-year-old site had the highest 15N loss (6.3%) as compared with the other treatments. The 15N mass balance method together with the use of bromide (Br) tracer applied at 100 kg Br ha−1 failed to obtain a reliable estimate of the denitrification loss. The microplots at the 1-year-old site had higher 15N immobilisation rate (7.5–24.7%) compared with those at 2- and 3-year-old sites (2.1–3.6%). Incorporating the residues resulted in an increase in 15N immobilisation rate (24.5–24.7%) compared with the control without the incorporated residues (8.4–14.3%). These findings suggest that climatic conditions played important roles in controlling the 15N transformations in the wet summer season and that the residue management regimes could also significantly influence the 15N transformations. Most of the 15N loss occurred through leaching, but a considerable amount of the 15N was lost through denitrification. Bromide proved to be an unsuitable tracer for monitoring the 15N leaching and movement under the wet summer conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号