首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   873篇
  免费   54篇
  国内免费   208篇
林业   49篇
农学   55篇
基础科学   74篇
  409篇
综合类   375篇
农作物   32篇
水产渔业   9篇
畜牧兽医   45篇
园艺   2篇
植物保护   85篇
  2024年   9篇
  2023年   25篇
  2022年   42篇
  2021年   27篇
  2020年   27篇
  2019年   55篇
  2018年   46篇
  2017年   38篇
  2016年   49篇
  2015年   53篇
  2014年   61篇
  2013年   69篇
  2012年   74篇
  2011年   77篇
  2010年   63篇
  2009年   64篇
  2008年   55篇
  2007年   61篇
  2006年   37篇
  2005年   35篇
  2004年   34篇
  2003年   16篇
  2002年   19篇
  2001年   15篇
  2000年   12篇
  1999年   10篇
  1998年   6篇
  1997年   10篇
  1996年   7篇
  1995年   9篇
  1994年   5篇
  1993年   7篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1987年   1篇
  1963年   1篇
排序方式: 共有1135条查询结果,搜索用时 15 毫秒
971.
本文通过对我国北方旱地农业区松嫩平原30个县(市)、40年完整的气象资料及农业产量资料的系统统计分析,得出松嫩平原40年来气候确有逐渐变暖的趋势,由于气候变暖,导致松嫩平原东部作物高产优势逐渐向南、北两个方向分化,玉米高产中心南移,麦豆高产中心北移,这是农业发展战略上需要注意的。据此,提出了该区农业综合发展的对策。  相似文献   
972.
Poor adoption of sustainable pre-rice green manure technology by lowland farmers is frequently associated with unreliable legume performance under adverse environmental conditions such as marginal soils, short photoperiod, and unfavorable hydrology. A series of field and microplot experiments were conducted at the International Rice Research Institute (IRRI) in 1991 and 1992 to screen and evaluate 12 promising flood-tolerant legumes for adaptation (N accumulation and biological N2 fixation) to a range of environmental stresses, frequently encountered in rice lowlands. Legumes belonging to the genera Sesbania and Aeschynomene were grown for 8 weeks at 10×10 cm spacing: (1) in a fertile control soil and in four marginally productive irrigated lowland rice soils (sandy Entisol, P-deficient Inceptisol, acid Ultisol, and saline Mollisol); (2) during short- (11.7h) and long-day (12.3 h) seasons in a favorable irrigated lowland soil; and (3) in an aerobic soil (drought-prone rain-fed lowland) and a deep-flood-prone lowland soil (1 week seedling submergence). A large variability in N accumulation was obsersed among legume species and across different environments, ranging from less than 1 to over 70 mg N plant-1. The nitrogen derived from the atmosphere (Ndfa) accounted on average for 82% of total N accumulation. Sesbania virgata was least affected by unfavorable soil conditions but its Ndfa was the lowest among the tested species (less than 60%). Stem nodule formation did not convey a significant advantage to legumes grown under adverse soil conditions. However, flooding reduced N2 fixation less in stem-nodulating than in solely root-nodulating species. Most species drastically reduced N accumulation under short-day conditions. Aeschynomene afraspera and S. speciosa were least affected by photoperiod. The considerable genetic variability in the germplasm screened allows the selection of potentially appropriate legumes to most conditions studied, thus increasing N accumulation in green manures.  相似文献   
973.
针对于非点源污染机理模型在实际运用中的限制,将人工神经网络引入地下水非点源污染格局的模拟和预报中,建立了基于GIS的BP神经网络模型用以模拟分析农区浅层地下水NO-3-N含量及其空间分布特征。结果表明,以农田氮盈余、地下水埋深、30~60cm土层砂粒含量和土壤有机质4个因素为输入因子,以地下水NO-3-N为输出因子,通过网络训练以及观测点缓冲区半径的设定与调整,BP神经网络模型有效地模拟了山东省桓台县地下水NO-3-N含量及其空间分布特征,并且有较高的精度。该研究可为华北平原农区地下水质管理提供分析工具与决策依据,是对非点源污染机理模型的有益补充。  相似文献   
974.
以2006~2008年统计资料为依据,分析了沧州市运东滨海平原和唐山市冀东滨海平原农业差异及其产生的原因,为促进全省农业发展和滨海平原农业协调发展提出了相应的对策建议。  相似文献   
975.
Double-maize cropping system is an effective option for coping with climate change in the North China Plain. However, the effects of changes in climate on the growth and yield of maize in the two seasons are poorly understood. Forty-six cultivars of maize with different requirements for growing degree days (GDD), categorized as high (H), medium (M) or low (L), and three cultivar combinations for two seasons as LH (using JD27 and DMY1 from category L in the first season; and YD629 and XD22 from category H in the second season), MM (using JX1 and LC3 from category M in the first season; and ZD958 and JX1 from category M in the second season) and HL (using CD30 and QY9 from category H in the first season; and XK10 and DMY3 from category L in the second season) were tested to examine the eco-physiological determinants of maize yield from 2015 to 2017. The correlations between the combinations of cultivars and grain yield were examined. The combination LH produced the highest annual grain yield and total biomass, regardless of the year. It was followed, in decreasing order, by MM and HL. Higher grain yield and biomass in LH were mainly due to the greater grain yield and biomass in the second season, which were influenced mainly by the lengths of the pre- and post-silking periods and the rate of plant growth (PGR). Temperature was the primary factor that influenced dry matter accumulation. In the first season, low temperatures during pre-silking decreased both the duration and PGR in LH, whereas high temperatures during post-silking decreased the PGR in MM and HL, resulting in no significant differences in biomass being observed among the three combinations. In the second season, high temperatures decreased both the PGR and pre- and post-silking duration in MM and HL, and consequently, the biomass of those two combinations were lower than that in LH. Moreover, because of lower GDD and radiation in the first season and higher grain yield in the second season, production efficiency of temperature and radiation (Ra) was the highest in LH. More importantly, differences in temperature and radiation in the two seasons significantly affected the rate and duration of growth in maize, and thereby affecting both dry matter and grain yield. Our study indicated that the combination of LH is the best for optimizing the double-maize system under changing climatic conditions in the North China Plain.  相似文献   
976.
The accurate representation of surface characteristic is an important process to simulate surface energy and water flux in land-atmosphere boundary layer. Coupling crop growth model in land surface model is an important method to accurately express the surface characteristics and biophysical processes in farmland. However, the previous work mainly focused on crops in single cropping system, less work was done in multiple cropping systems. This article described how to modify the sub-model in the SiBcrop to realize the accuracy simulation of leaf area index(LAI), latent heat flux(LHF) and sensible heat flux(SHF) of winter wheat growing in double cropping system in the North China Plain(NCP). The seeding date of winter wheat was firstly reset according to the actual growing environment in the NCP. The phenophases, LAI and heat fluxes in 2004–2006 at Yucheng Station, Shandong Province, China were used to calibrate the model. The validations of LHF and SHF were based on the measurements at Yucheng Station in 2007–2010 and at Guantao Station, Hebei Province, China in 2009–2010. The results showed the significant accuracy of the calibrated model in simulating these variables, with which the R~2, root mean square error(RMSE) and index of agreement(IOA) between simulated and observed variables were obviously improved than the original code. The sensitivities of the above variables to seeding date were also displayed to further explain the simulation error of the SiBcrop Model. Overall, the research results indicated the modified SiBcrop Model can be applied to simulate the growth and flux process of winter wheat growing in double cropping system in the NCP.  相似文献   
977.
Rice growth requires a large amount of water, and planting rice will increase the contradiction between supply and demand of water resources. Paddy field fallowing is important for the sustainable development of an agricultural region, but it remains a great challenge to accurately and quickly monitor the extent and area of fallowed paddy fields. Paddy fields have unique physical features associated with paddy rice during the flooding and transplanting phases. By comparing the differences in phenology before and after paddy field fallowing, we proposed a phenology-based fallowed paddy field mapping algorithm. We used the Google Earth Engine(GEE) cloud computing platform and Landsat 8 images to extract the fallowed paddy field area on Sanjiang Plain of China in 2018. The results indicated that the Landsat8, GEE, and phenology-based fallowed paddy field mapping algorithm can effectively support the mapping of fallowed paddy fields on Sanjiang Plain of China. Based on remote sensing monitoring, the total fallowed paddy field area of Sanjiang Plain is 91 543 ha. The resultant fallowed paddy field map is of high accuracy, with a producer(user) accuracy of 83%(81%), based on validation using ground-truth samples. The Landsat-based map also exhibits high consistency with the agricultural statistical data. We estimated that paddy field fallowing reduced irrigation water by 384–521 million cubic meters on Sanjiang Plain in 2018. The research results can support subsidization grants for fallowed paddy fields, the evaluation of fallowed paddy field effects and improvement in subsequent fallowed paddy field policy in the future.  相似文献   
978.
The relative efficiency of single-pass electrofishing of longer stream sections vs. double-pass electrofishing of shorter reaches was evaluated in small (<5 m wide) wadable lowland streams in the Lake Balaton basin, Hungary. Two hundred meters long stream sections at 8 sites were divided into ten 20 m long sampling units each. These units were used to estimate the representativeness of species richness, species composition and relative abundance data at each level of sampling effort (single vs. double-pass, and number of sampling units pooled) using rarefaction and similarity-based approaches. Assemblage variables showed strong response to the length of the stream sampled (number of sampling units pooled). However, no differences were found between the single- and double-pass methods at any level of sample size for any assemblage variable. Estimates of species richness and species occurrence distributions required more sampling effort than estimates of species relative abundances, using any evaluation method. If a proxy estimate of sample representativeness cannot be obtained in the field, a minimum sampling of single-pass electrofishing of 100 m long sections may be necessary even in small wadable streams with low level of habitat and assemblage diversity to get a relatively unbiased picture on assemblage characteristics.  相似文献   
979.
为明确不同灌溉施肥措施下夏玉米-冬小麦轮作农田N_2O的排放特征,寻求既能减少N_2O排放又保证粮食产量的灌溉施肥方法,以华北地区夏玉米-冬小麦轮作农田为研究对象,利用静态暗箱-气相色谱法对土壤N_2O排放特征进行了周年(2015年6月15日-2016年6月12日)观测,探讨了常规施氮量(夏玉米:205.5 kg/hm2;冬小麦:250 kg/hm2)下传统灌溉施肥(FP100%)、滴灌+传统施肥(DN100%)、滴灌水肥一体化(FN100%)以及滴灌水肥一体化下不同施氮量(减氮60%(FN40%)、减氮30%(FN70%)、常规氮量(FN100%)和增氮30%(FN130%))下农田N_2O排放特征及土壤温湿度对农田N_2O排放的影响,另设滴灌+不施氮肥(CK)为对照。结果表明:在夏玉米-冬小麦轮作体系中小麦季农田土壤N_2O排放通量高于玉米季,夏玉米季土壤N_2O阶段排放峰值出现在拔节期和抽雄期;而冬小麦季土壤N_2O阶段排放峰值出现在冬前苗期和拔节期。与FP100%处理相比,FN40%处理在夏玉米和冬小麦季的N_2O平均排放通量分别降低了70.8%和66.7%,N_2O排放总量分别减少了58.7%和66.3%;整个轮作季周年产量没有显著减少,N_2O排放总量显著降低了62.9%(P0.05)。FN40%处理夏玉米季和冬小麦N_2O排放系数分别为0.06和0.01,显著低于其他施肥处理(P0.05)。土壤温湿度均影响农田N_2O排放,但不同处理在夏玉米和冬小麦生长季与土壤温度和土壤湿度的相关性并不相同。综合考虑N_2O排放量和作物产量,研究认为,在华北地区夏玉米-冬小麦轮作系统下,若采用滴灌,则根据作物需肥规律同时采用水肥一体化方式进行施肥才既有增产,又减少农田N_2O排放的效果,并且在滴灌水肥一体化技术下,减少60%施氮量在保障粮食产量的同时,可以有效地减少N_2O排放,是兼顾作物产量及大气环境的推荐管理措施。  相似文献   
980.
为科学选择适于西辽河平原春玉米生产的灌溉方式,于2018—2020年在通辽市、赤峰市、兴安盟,采用3种灌溉方式——浅埋滴灌、膜下滴灌和传统畦灌开展试验,探究其对春玉米产量和水、氮利用效率的影响。结果表明,在玉米吐丝后,通辽市和赤峰市浅埋滴灌的干物质积累量显著(P<0.05)高于传统畦灌。浅埋滴灌下,玉米茎鞘干物质转运率和转运贡献率较膜下滴灌、传统畦灌分别高9.31%、15.25%和13.45%、29.07%,叶片干物质转运率和转运贡献率分别提高15.17%、32.38%和6.93%、47.82%。在3种灌溉方式下,春玉米吐丝前、吐丝后的干物质积累量均与产量呈显著(P<0.05)正相关。总的来看,浅埋滴灌下春玉米的产量较膜下滴灌和传统畦灌平均增产3.43%和7.43%,膜下滴灌较传统畦灌平均增产3.87%。在灌溉水利用效率上,浅埋滴灌和膜下滴灌均显著(P<0.05)高于传统畦灌;在氮肥偏生产力上,除2018年兴安盟试验点外,浅埋滴灌均显著(P<0.05)高于传统畦灌。综合产量、水氮高效利用等因素,浅埋滴灌的灌溉方式为西辽河平原和拟生态区适宜的灌溉方式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号