首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   690篇
  免费   63篇
  国内免费   140篇
林业   10篇
农学   336篇
基础科学   2篇
  32篇
综合类   218篇
农作物   147篇
水产渔业   40篇
畜牧兽医   69篇
园艺   14篇
植物保护   25篇
  2024年   1篇
  2023年   6篇
  2022年   6篇
  2021年   14篇
  2020年   29篇
  2019年   25篇
  2018年   26篇
  2017年   27篇
  2016年   22篇
  2015年   28篇
  2014年   30篇
  2013年   25篇
  2012年   42篇
  2011年   45篇
  2010年   57篇
  2009年   63篇
  2008年   55篇
  2007年   71篇
  2006年   45篇
  2005年   61篇
  2004年   43篇
  2003年   38篇
  2002年   32篇
  2001年   21篇
  2000年   15篇
  1999年   7篇
  1998年   8篇
  1997年   6篇
  1996年   10篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1979年   1篇
  1977年   1篇
  1962年   1篇
  1955年   1篇
排序方式: 共有893条查询结果,搜索用时 31 毫秒
51.
研究试验应用作物模型与QTL定位的互补作用,对作物发育模型的生理参数作QTL定位分析,使作物发育的预测直接建立在单个遗传基因QTL的基础之上。以大麦两个亲本及其94个自交纯系(RIL)的感光性试验为依据,确定了播种一出穗期间对应的发育模型的4个参数值,再对这些参数值的QTL在遗传图上的位置及其加性效应进行了估算。并以基于QTL效应的模型对RIL群体在不同环境条件(两年播期试验)下的发育期进行预测。  相似文献   
52.
利用双杂合位点标记资料构建芒果遗传图谱   总被引:18,自引:0,他引:18  
为了建立芒果 (MangiferaindicaL )的分子标记遗传图 ,用 15对AFLP (AmplifiedFragmentLengthPolymorphism)引物组合扩增了芒果品种间杂交组合 (Keitt×Tommy Atkins)的 6 0个F1单株 ,获得了 191个多态性位点。它们的分离表现为双杂合 (Aa×Aa)和测交 (Aa×aa)分离两种类型 ,但前者占了 5 9 7%。为了充分利用双杂合位点分离所提供的遗传信息 ,我们根据群体中任意两个双杂合位点隐性个体出现的数目 ,利用二项式分布概率理论推断它们是否连锁以及它们彼此间的相引或相斥关系。在该芒果群体呈 3:1分离的 81个多态性标记中 ,39个被分为 14组 ,以此为基础构建了 15个连锁群 ;这些连锁群共覆盖了 35 4 1cM的芒果基因组。其中 ,最小与最大遗传距离分别为 3 7cM和 2 8 9cM。此外 ,对 18个 1∶1分离类型的标记 ,直接利用Mapmaker作图软件构建了两个芒果连锁群。本文对所提出的利用双杂合位点构建果树遗传图谱的策略进行了讨论。  相似文献   
53.
Greenbug and Russian wheat aphid (RWA) are two devastating pests of wheat. The first has a long history of new biotype emergence and recently. RWA resistance has just started to break down. Thus, it is necessary to find new sources of resistance that will broaden the genetic base against these pests in wheat. Seventy‐five doubled haploid recombinant (DHR) lines for chromosome 6A from the F1 of the cross between “Chinese Spring’ and the “Chinese Spring (Synthetic 6A) (Triticum dicoccoides × Aegilops tauschii)” substitution line were used as a mapping population for testing resistance to greenbug biotype C and to a new strain of RWA that appeared in Argentina in 2003. A quantitative trait locus (QTL) (br antixenosis to greenbug was significantly associated with the marker loci Xgwm1009 and Xgwm1185 located in the centromere region of chromosome 6A. Another QTL which accounted for most of the antixenosis against RWA was associated with the marker loci Xgwm1291 and Xiinni1150. both located on the long arm of chromosome 6A. This is the first report of greenbug and RWA resistance genes located on chromosome 6A. It is also the first report of antixenosis against the new strain of RWA. As most of the RWA resistance genes present in released cultivars have been located in [he D‐ genome, it is highly desirable to find new sources in other genomes to combine the existing resistance genes with new sources.  相似文献   
54.
以Glu-1位点正常和部分缺失的小麦品系为材料,探讨HMW-GS和LMW-GS组成与谷蛋白聚合体粒度分布和面团特性的关系,为利用HMW-GS缺失系改良小麦品质提供理论依据。在20个供试硬白冬麦品系中,1个品系为Glu-A1位点缺失,5个品系为Glu-D1缺失,3个品系为Glu-A1和Glu-D1双缺失。所有品系的蛋白质含量皆较高(13.39%~14.12%),品系间无显著差异,缺失系与非缺失系间也无显著差异。Glu-1位点缺失显著降低了高分子量谷蛋白/低分子量谷蛋白比(HMW/LMW)、不溶性谷蛋白大聚体的含量和百分比。谷蛋白/醇溶蛋白比(GLU/GLI)在基因型间变幅较小,且在缺失系和非缺失系间无显著差异。Glu-1位点缺失显著降低了面团弹性,但显著提高了面团的延展性。部分Glu-1位点缺失系仍具有较高的面团强度和突出的延展性,谷蛋白聚合体粒度分布和面团特性受谷蛋白亚基组成和表达量的共同影响。研究结果表明,利用Glu-1位点亚基缺失可能是改善面筋延展性,提高食品加工品质的方法之一。  相似文献   
55.
Recognizing the enormous potential of DNA markers in plant breeding, many agricultural research centers and plant breeding institutes have adopted the capacity for marker development and marker-assisted selection (MAS). However, due to rapid developments in marker technology, statistical methodology for identifying quantitative trait loci (QTLs) and the jargon used by molecular biologists, the utility of DNA markers in plant breeding may not be clearly understood by non-molecular biologists. This review provides an introduction to DNA markers and the concept of polymorphism, linkage analysis and map construction, the principles of QTL analysis and how markers may be applied in breeding programs using MAS. This review has been specifically written for readers who have only a basic knowledge of molecular biology and/or plant genetics. Its format is therefore ideal for conventional plant breeders, physiologists, pathologists, other plant scientists and students.  相似文献   
56.
Phytate (inositol-hexa-phosphate) has an important role in plants but it also may have anti-nutritional properties in animals and humans. While there is debate within the plant breeding and nutrition communities regarding an optimum level in grain, there appears to be little information at the molecular level for the genetics of this trait, and its association with important trace elements, in particular, Fe and Zn. In this preliminary study, quantitative trait loci (QTL) for grain phytates, Zn and Fe in glasshouse-grown rice lines from an IR64 × Azucena doubled haploid population were identified. Correlations between phytate and essential nutrients were also studied. Transgressive segregation was found for most traits. Phytate and total P concentrations had one QTL in common located on chromosome five with the (high concentration) allele contributed from Azucena. There were significant positive correlations between phytate and inorganic phosphorus (P), total P, Fe, Zn, Cu and Mn concentrations for both grain concentration and content. However, the QTLs of phytate were not located on the same chromosomal regions as those found for Fe, Zn and Mn, suggesting that they were genetically different and thus using molecular markers in breeding and selection would modify the phytate level without affecting grain micronutrient density.  相似文献   
57.
A procedure was developed for marker-assisted selection of complex traits for common bean (Phaseolus vulgarisL.) using an index based on QTL-linked markers and ultrametric genetic distances between lines and a target parent. A comparison of the mean seed yields of the top five lines selected by different schemes demonstrated that the highest yielding group was selected on the basis of a combination of phenotypic performance and a high QTL-based index,followed by groups identified by a high QTL-based-index, conventional selection,and a low QTL-based-index. This study demonstrated a simple way to use information obtained from QTL studies to make selection decisions. The study also showed that the use of the QTL-based-index in conjunction with the ultrametric genetic distance to the target parent would enablea plant breeder to select lines that retain important QTL in a desirable genetic background. Therefore, this type of MAS would be expected to be superior to the phenotypic selection. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
58.
X. J. Ge    Y. Z. Xing    C. G. Xu  Y. Q. He 《Plant Breeding》2005,124(2):121-126
The traits of elongation, volume expansion, and water absorption are very important in determining the quality of cooked rice grains. In this study, quantitative trait loci (QTL) analysis of these traits was performed using a recombinant inbred population derived from a cross between two indica cultivars, ‘Zhenshan 97’ and ‘Minghui 63 ,’ which are the parents of the most widely grown hybrid rice in China. Using a linkage map based on 221 molecular marker loci covering a total of 1796 cM, a total of 33 QTLs were identified for the nine traits tested. QTLs were detected on chromosomes 1– 3 , 5– 9 , and 11 , respectively. The QTLs identified included three for cooked rice grain length elongation (chromosomes 2 , 6 , and 11), six for width expansion (chromosomes 1‐ 3 , 6 , 9 , and 11) and two for water absorption (chromosomes 2 and 6). Interestingly, a single QTL located near the wx gene on chromosome 6 seemed to influence all the traits tested for the cooked rice quality.  相似文献   
59.
P. Somta    A. Kaga    N. Tomooka    K. Kashiwaba    T. Isemura    B. Chaitieng    P. Srinives    D. A. Vaughan 《Plant Breeding》2006,125(1):77-84
To facilitate transfer of bruchid resistance to azuki bean (Vigna angularis) from its relatives an interspecific mapping population was made between rice bean, V. umbellata, and the related wild species V. nakashimae. The V. umbellata parent is completely resistant and V. nakashimae is completely susceptible to the bruchid beetle pests, azuki bean weevil (Callosobruchus chinensis) and cowpea weevil (C. maculatus). There is very low cross compatibility between V. umbellata and azuki bean. Therefore, V. nakashimae, that crosses with both V. umbellata and V. angularis without the need for embryo rescue, is used as a bridging species. A genetic linkage map was constructed based on an interspecific F2 mapping population between V. umbellata and V. nakashimae consisting of 74 plants. A total of 175 DNA marker loci (74 RFLPs and 101 SSRs) were mapped on to 11 linkage groups spanning a total length of 652 cM. Segregation distortion was observed but only three markers were not linked to any linkage group due to severe segregation distortion. This interspecific genome map was compared with the genome map of azuki bean. Of 121 common markers on the two maps, 114 (94.2%) were located on the same linkage groups in both maps. The marker order was highly conserved between the two genome maps. Fifty F2 plants that produced sufficient seeds were used for quantitative trait locus (QTL) analysis and locating gene(s) for C. chinensis and C. maculatus resistance in V. umbellata. The resistance reaction of these F2 plants differed between C. chinensis and C. maculatus. Both resistances were quantitatively inherited with no F2 plants completely susceptible to C. chinensis or C. maculatus. One putative QTL for resistance to each of these bruchid species was located on different linkage groups. Other putative QTLs associated with resistance to both C. chinensis and C. maculatus were localized on the same linkage group 1. Linked markers associated with the bruchid‐resistant QTL will facilitate their transfer to azuki bean breeding lines.  相似文献   
60.
Although the Advanced Backcross strategy has proven very useful for QTL detection in tomato, it has been used mainly in identifying QTL for agronomic traits such as yield, color, etc. Tomato flavor is an important quality characteristic, yet it has been difficult to assess flavor or traits that affect it. In this study the AB-QTL strategy was applied to four advanced backcross populations to identify QTL for biochemical properties that may contribute to the flavor of processed tomatoes, such as sugars and organic acids. A total of 222 QTL were identified for 15 traits, including flavor as assessed by a taste panel. Correlations of certain biochemicals with flavor and possible methods of assessing and improving flavor are discussed. In particular, QTL with very significant effects associated with the ratio of sugars/glutamic acid, a trait highly correlated with improved flavor, have been identified as good targets for future work in improving the flavor of tomatoes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号