首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   2篇
  国内免费   4篇
林业   1篇
农学   17篇
  20篇
综合类   20篇
农作物   148篇
畜牧兽医   13篇
园艺   5篇
植物保护   35篇
  2023年   1篇
  2021年   6篇
  2020年   5篇
  2019年   1篇
  2018年   1篇
  2017年   49篇
  2016年   37篇
  2015年   65篇
  2014年   29篇
  2013年   14篇
  2012年   7篇
  2011年   5篇
  2010年   4篇
  2008年   1篇
  2007年   2篇
  2006年   5篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1989年   1篇
排序方式: 共有259条查询结果,搜索用时 11 毫秒
101.
Amylose and resistant starch (RS) content in rice flour were manipulated. The experiment was conducted using a full factorial design. Rice flour with average amylose content of 20 and RS content of 0.5 g/100 g dry sample was fortified with pure amylose from potato and high RS modified starch to reach the final amylose content of 30, 40 and 50 and RS content of 2, 4 and 6 g/100 g dry sample. The fortified rice flours were examined for their gelatinisation properties, in-vitro enzymatic starch digestion and gel textural properties. It was found that amylose and RS significantly affect all the fortified rice flour properties (p < 0.05). High amylose and RS improved starch digestion properties, reducing the rate of starch digestion and lowering the glycaemic index (GI) values. Amylose had a more pronounced effect on the fortified rice starch properties than RS. In this study, the fortified rice flour which contained amylose and RS of approximately 74 and 9 g/100 g dry sample respectively was used to produce rice noodles. The noodles exhibited low GI values (GI < 55). However, amylose and RS affected the textures of rice noodles providing low tensile strength and break distance (extensibility).  相似文献   
102.
In this study, scanning electron microscopy (SEM) revealed the formation of pits and pores on the surfaces of starch granules in response to drought stress, with substantially more pronounced effects in the ordinary yield potential wheat cv. Xindong 23 than the excellent yield potential wheat cv. Xindong 20. Drought induced a significant reduction in starch granule sizes in both wheat varieties, though the reduction observed in Xindong 23 was six times more pronounced than that observed for Xindong 20. Amyloglucosidase and α-amylase treatment of starch from wheat grown in drought conditions released significantly more reducing sugars compared with samples from irrigated controls. SEM and confocal laser scanning microscopy (CLSM) revealed that starch granules from the two wheat varieties grown under drought conditions had substantially increased fluorescence after treatment with proteolytic enzymes and staining with methanolic merbromin and 3-(4-carboxybenzoyl) quinoline-2-carboxaldehyde dyes. Analysis of pasting properties showed significant increases of peak viscosity, trough viscosity, break down, and setback following drought stresses. Furthermore, drought induced a significant reduction in the water binding capacity and increased damage to starch only in Xindong 23. These results provide insight into the potential mechanisms through which drought influences the ultrastructures and physicochemical properties of starch in wheat.  相似文献   
103.
The interactions of puroindolines with polar lipids were investigated using polarization of fluorescence probes preincorporated into a liposomal bilayer containing PC, PI, PS, MGDG, DGDG, and sulfolipids. The intrinsic fluorescence of Trp residue method was also used. Regardless of the kind of lipid used for liposome preparation, proteins interacted with the liposomes. Conformational changes of the proteins were observed simultaneously with the change in the molecule packing in the lipid bilayer of the liposomes. Puroindoline interactions with the surface of the liposomes have explicit importance for the net charge of this surface. The strong interaction between the proteins and lipids takes place in the presence of a ligand with a negative charge. The obtained results confirm that lipids take part in puroindoline–starch granule surface interactions.  相似文献   
104.
The potential of quinoa to act as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant peptides was studied. A quinoa protein isolate (QPI) with a purity of 40.73 ± 0.90% was prepared. The QPI was hydrolysed at 50 °C for 3 h with two enzyme preparations: papain (P) and a microbial papain-like enzyme (PL) to yield quinoa protein hydrolysates (QPHs). The hydrolysates were evaluated for their DPP-IV inhibitory and oxygen radical absorbance capacity (ORAC) activities. Protein hydrolysis was observed in the QPI control, possibly due to the activity of quinoa endogenous proteinases. The QPI control had significantly higher DPP-IV half maximal inhibitory concentrations (IC50) and lower ORAC values than QPH-P and QPH-PL (P < 0.05). Both QPH-P and QPH-PL had similar DPP-IV IC50 and ORAC values. QPH-P had a DPP-IV IC50 value of 0.88 ± 0.05 mg mL−1 and an ORAC activity of 501.60 ± 77.34 μmol Trolox equivalent (T.E.) g−1. To our understanding, this is the first study demonstrating the in vitro DPP-IV inhibitory properties of quinoa protein hydrolysates. QPHs may have potential as functional ingredients with serum glucose lowering properties.  相似文献   
105.
Oats (Avena sativa L.) were revaluated in recent years as a promising crop for improving the nutritional quality of foods, due to their richness in many bioactive compounds, including phenols. These plant secondary metabolites are useful as radical scavenging, and also possess positive biochemical effects against cardiovascular diseases, cancer growth and age-related diseases. Twenty oat cultivars were analyzed for their soluble phenol content (SPC, ranging 0.78–1.09 gGAE/kg d.m.) and total antioxidant capacity (TAC, ranging 13.99–18.84 mmol TE/kg d.m.). In another experiment, the kinetics of SPC accumulation and TAC in the immature grains of five oat cultivars revealed a marked decrease of both parameters (−48.9% and −72.1%, respectively) from ten days after anthesis to maturity. These results could suggest a possible use of immature oat grains in human nutrition, as it was already proposed for other cereals.  相似文献   
106.
107.
108.
DNA methylation plays an important role in the regulation of gene expression in biotic and abiotic stresses. In the present study, a methylation-sensitive amplified polymorphism (MSAP) analysis was performed to profile DNA methylation changes in seven resistant and sensitive chickpea genotypes following inoculation with Fusarium oxysporum f. sp. ciceris. In all, 27468 DNA fragments, each representing a recognition site cleaved by either or both of two isoschizomers, were amplified using nine selective primer pairs. DNA methylation was evaluated in leaves, stems and roots in control and inoculated plants. Extensive cytosine methylation alterations were found in the pathogen-treated genotypes compared with the corresponding control, including hypermethylation and demethylation as well as the potential conversion of methylation types. For all genotypes, the percentage of demethylated sites were more than methylated sites in infected plants compared with the corresponding control. No significant differences were observed for banding patterns in infected and control leaf tissues, while the differences between percentage of unchanged, methylated and demethylated sites were significant in stem and root tissues. The total numbers of methylated polymorphic bands ranged from 137 to 154 bands in Sel95th1716 and Arman, accounting for 36.81%–44.64% of all bands, respectively. Ten fragments that were differentially amplified between infected and control plants were isolated and sequenced in three tissues separately. Most of sequenced fragments showed homology with disease related genes in GenBank. The results suggest that significant differences in cytosine methylation exist between resistant and sensitive chickpea genotypes, and that hypermethylation or hypomethylation of specific genes may be involved in the chickpea resistance to Fusarium wilt.  相似文献   
109.
110.
诸葛菜是一种极有价值的观赏、蔬菜、饲料和油料作物种质资源。为建立诸葛菜小孢子胚状体诱导再生植株技术,并为诸葛菜染色体组的起源与进化研究提供相关数据资料,本研究通过对诸葛菜游离小孢子的培养,研究了热激培养时间和活性炭浓度对胚状体产量的影响,并采用常规压片法对诸葛菜单倍体减数分裂染色体配对行为进行了观察。结果表明,添加活性炭和热激培养对胚状体诱导是必需的。在直径6 cm培养皿中培养4 mL密度为1花蕾花粉mL?1的小孢子NLN悬液时,每皿添加1mg活性炭和32℃热激3d的培养条件下子叶形胚状体和总胚状体产量最高,分别为每花蕾0.92±0.18个和1.32±0.25个。子叶形胚状体在1/2 MS培养基上萌发率为27.73%。花粉植株中自然加倍率为25%,加倍植株染色体数为24,单倍体植株染色体数为12。诸葛菜单倍体减数分裂染色体的平均配对构型为n=12=6.352I+2.008II+0.384III+0.12IV,具有二价体及三价体和四价体的细胞比例高达96%,少量细胞的12条染色体联会形成3个四价体,说明诸葛菜很可能是起源于染色体基数x=3的同源八倍体。本试验结果对于诸葛菜新材料新品种选育...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号