首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1691篇
  免费   82篇
  国内免费   185篇
林业   116篇
农学   71篇
基础科学   72篇
  660篇
综合类   500篇
农作物   35篇
水产渔业   74篇
畜牧兽医   270篇
园艺   17篇
植物保护   143篇
  2024年   14篇
  2023年   49篇
  2022年   63篇
  2021年   103篇
  2020年   91篇
  2019年   90篇
  2018年   69篇
  2017年   101篇
  2016年   92篇
  2015年   86篇
  2014年   76篇
  2013年   138篇
  2012年   145篇
  2011年   100篇
  2010年   69篇
  2009年   79篇
  2008年   60篇
  2007年   79篇
  2006年   40篇
  2005年   54篇
  2004年   46篇
  2003年   48篇
  2002年   34篇
  2001年   41篇
  2000年   31篇
  1999年   27篇
  1998年   11篇
  1997年   14篇
  1996年   13篇
  1995年   56篇
  1994年   4篇
  1993年   5篇
  1992年   10篇
  1991年   4篇
  1990年   3篇
  1989年   6篇
  1988年   4篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有1958条查询结果,搜索用时 15 毫秒
111.
A long-term experiment has been conducted between 2001 and 2008 at Balcarce, Argentina, to determine the effect of sulfur (S) fertilization on S concentration in grains, crop yield, and residual S in soil. Two treatments were evaluated: annual S application to crops (15 kg ha?1; S1) and a control with no S fertilization (S0). Sulfur fertilization only increased wheat yield (22% of the crops in the experiment). However, S application increased S concentration in grains in wheat, soybean, and maize (56% of the crops). Although, for all years, the S mass balance was positive for S1 and negative for S0, no differences in soil S extracted as sulfate (S-SO4 ?2) content previous to the crop sown were determined. The absence of differences in S accumulation in aboveground vegetative biomass and grain of the maize used as a check also suggest that long-term S fertilization did not affect the soil S availability for crops.  相似文献   
112.
Concern about the environmental effect of air pollution on areas of high conservation value in the UK has prompted the statutory agencies to initiate an investigation on these areas. For this, critical loads maps have been used together with predicted air pollution data, monitored air pollution data and remotely sensed land cover information within a geographic information system (GIS). Additional information on designated Sites of Special Scientific Interest (SSSI) for England and Wales have also been incorporated. This provides the framework for examining potential impacts to these sites under various current and future scenarios. The approach allows for the investigation of the impacts of individual point sources as well as complete national scenarios. Preliminary results are provided from analysis of a single pollutant (sulphur). These indicate that nationally up to 52% of the area of SSSI's (5000 km2) are at risk from soil acidification. Using this approach it has been possible to apportion the load on any SSSI, thereby enabling the ecological impacts of each point source to be identified. This information can then be used to assess priorities for regulatory controls.  相似文献   
113.
In most soil ecosystems, soil biological activity and associated processes are concentrated in the rhizosphere soil and is influenced by the external application of plant nutrients. The impacts of boron and sulfur on soil biological properties were evaluated in an Aeric Haplaquept (pH 5.7) growing rapeseed (Brassica campestris L.) as a test crop. Application of boron (B) at 2 mg kg?1 in combination with sulfur (S) at 30 mg kg?1 (B2S30) resulted in highest available Boron and sulfur of 0.239 and 15.4 mg kg?1, respectively and registered 62.5% and 71.3% increase over control (B0S0) at 60 days of crop growth compared to individual applications. The microbial populations viz. phosphate solubilizing microorganisms (PSM) and nitrogen fixing bacteria (NFB) were the highest of 52.63 and 85.87 × 105 g?1 soil, respectively, CFU in B2S30 treatment at 60 days and adjudged as the best treatment combination for enhancement of soil biological indices and seed yield.  相似文献   
114.
Continuous monitoring of cloud and rain samples at three mountain sites in the UK has allowed consideration of the long term impact of the enhancement of the wet deposition of pollutants by orographie effects, specifically the scavenging of cap cloud droplets by rain falling from above (the seeder-feeder effects). The concentration of the major pollutant ions in the cloud water is related to the relative proximity of each site to marine and anthropogenic sources of aerosol. In general, the concentrations of major ions in precipitation at summit sites exceed those in precipitation to low ground nearby by 20% to 50%. Concentrations in orographie cloud exceed those in upwind rain by between a factor of five and ten. The results are consistent with seeder-feeder scavenging of hill cloud by falling precipitation in which the average concentration of ions in scavenged hill cloud exceed those in precipitation upwind by a factor of 1.7 to 2.3 for sulphate and nitrate respectively at Dunslair Heights and 1.5 to 1.8 for sulphate and nitrate at Holme Moss. The results suggest that the parameterisation of this relationship with scavenged feeder cloud water concentrations assumed to exceed those in seeder rain by a factor of two for the production of predictive maps of wet deposition in mountainous regions of the U.K. is satisfactory.  相似文献   
115.
A glasshouse experiment was conducted to elucidate the influence of elemental sulfur (S) application rates (0, 0.5, 1.0, and 2.0 g S kg?1 soil) on the release and uptake of S at 0, 20, and 40 days after incubation. Results showed that there was a progressive upward trend in maize leaves, stem, and root S content with application of elemental S. However, maize production followed a nonlinear model. Plants grown in untreated soils suffer from S deficiency and addition of elemental S at a rate of 0.5 g S kg?1 soil alleviated S deficiency. The decrease in maize performance due to the highest S application rate was not related to S toxicity. The greatest leave, stem, and root productions were obtained at S concentrations of 0.41, 0.58, and 0.2%, respectively. Overall, application of elemental S at a rate of 0.5 g S kg?1 soil is recommended for maize performance improvement.  相似文献   
116.
This research investigates the impact of human activities on carbon (C) dynamics in a mountainous and semi‐arid environment. Despite the low C status of drylands, soil organic carbon (SOC) is the largest C pool in these systems and therefore may offer significant C sequestration potential in systems recovering from degradation. Nevertheless, quantification of this potential is limited by lack of knowledge concerning the magnitude of and controls on regional SOC stocks. Therefore, this study aimed to (i) investigate the variability of soil organic carbon in relation to recovery period and key soil and topographical variables, and (ii) quantify the effects of recovery period following abandonment on SOC stocks. Soil profiles were sampled in the Sierra de los Filabres (southeast Spain) in different land units along geomorphic and degradation gradients. SOC contents were modelled using recovery period and soil and topographical variables. Sample depth, topographic position, altitude, recovery period and stone content were identified as the main factors for predicting SOC concentrations. SOC stocks in 1 m depth of soil varied between 3.16 and 76.44 t/ha. Recovery period (years since abandonment), topographic position and altitude were used to predict and map SOC stocks in the top 0.2 m. The results show that C accumulates rapidly during the first 10–50 yr following abandonment; thereafter, the stocks evolve towards a steady‐state level. The erosion zones in the study area demonstrate greater potential to increase their SOC stocks when abandoned. Deposition zones have greater SOC values, although their C accumulation rate is lower compared with erosional landscapes in the first 10–50 yr following abandonment. Therefore, full understanding of the C sequestration potential of land use change in areas of complex topography requires knowledge of spatial variability in soil properties and in particular SOC.  相似文献   
117.
The interactive effect of potassium (K) and sulfur (S) fertilization on productivity and mineral nutrition of sunnhemp (Crotalaria juncea L.) was evaluated in a field experiment during 2008 and 2009 cropping seasons at Uttar Pradesh, India. Potassium and sulfur fertilizers increased fiber yield and nutrient uptake of sunnhemp. It was observed that an application of K and S at 40 kg ha?1 each significantly increased the total dry matter, fiber yield, and nutrient uptake of sunnhemp. The crop yield response to the added S was greater than for K and the nutrient use efficiency was also higher at lower levels of fertilizer addition. The increased levels of K and S improved the number of nodules and crude protein content of sunnhemp leaves.  相似文献   
118.
Recently, the nanotechnology industry has seen a growing interest in integrating silver nanoparticles(AgNPs) into agricultural products, which increases soil exposure to these particles. This demands an investigation into the effect of AgNPs on soil health. Changes in soil enzyme activities upon exposure to AgNPs can serve as early indicators of any adverse effects that these particles may have on soil quality. This study aimed to determine the effects of AgNP size, concentration, coating, and e...  相似文献   
119.
密闭空间药雾浓度测量的试验方法研究   总被引:1,自引:3,他引:1  
运用改进后的大气采样器,建立了一种对密闭空间细雾流分批采样分批分析的研究方法。对于采样参数组合的选取以及双侧采样的空间差异性进行了研究和统计判断,得出了最佳采样参数组合为采样时间5min,采气量5L/min。基于最佳采样参数组合,发现沉降曲线中存在分段点现象,分段点在喷雾结束后13min,也即开始喷雾后27min附近。针对分段点现象,给出了分段拟合的细雾流浓度沉降曲线及解析描述。采用改进的大气采样器可以获取喷雾结束后79rnin内的浓度数据,文献[13]中所用的采样方法只能得到喷雾结束后45min左右的浓度数据,因此该方法对药雾浓度沉降曲线的尾部特征描述能提供更多的信息。  相似文献   
120.
Forest systems cover more than 4.1×109 ha of the Earth's land area. The future response and feedbacks of forest systems to atmospheric pollutants and projected climate change may be significant. Boreal, temperate and tropical forest systems play a prominent role in carbon (C), nitrogen (N) and sulfur (S) biogeochemical cycles at regional and global scales. The timing and magnitude of future changes in forest systems will depend on environmental factors such as a changing global climate, an accumulation of CO2 in the atmosphere, and increase global mineralization of nutrients such as N and S. The interactive effects of all these factors on the world's forest regions are complex and not intuitively obvious and are likely to differ among geographic regions. Although the potential effects of some atmospheric pollutants on forest systems have been observed or simulated, large uncertainty exists in our ability to project future forest distribution, composition and productivity under transient or nontransient global climate change scenarios. The potential to manage and adapt forests to future global environmental conditions varies widely among nations. Mitigation practices, such as liming or fertilization to ameliorate excess NOx or SOx or forest management to sequester CO2 are now being applied in selected nations worldwide.The U.S. Government's right to a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号