首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   1篇
  国内免费   7篇
林业   10篇
农学   5篇
基础科学   13篇
  40篇
综合类   14篇
农作物   1篇
畜牧兽医   1篇
园艺   9篇
植物保护   1篇
  2022年   1篇
  2021年   1篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2013年   15篇
  2012年   8篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
11.
Release rates of nonexchangeable K from Ap material of a Luvisol (‘Eckerde’ loess, 15% clay) are determined using a percolation procedure which avoids the common artifacts due to shaking or stirring soil suspensions and thus provides less biased kinetic data. CaCl2 solution (10 mMc. 20 °C. pH 5.8) is percolated through packages of soil aggregates (0.5–1 mm grain size, 0.5 g samples) with 0.02 to 25 ml h?1. Solute K (CK) was varied between < 1 and > 10 μM and is shown to have a dominant influence on the rates of interlayer K release. These increase exponentially below 3.5 μM (no steady state but steady decrease of release rates in each sample). The difference between the related CK between moderate and high release rates is as small as 1 μM K. The average rates, of a 10-day-interval, starting after 1.3 times the exchangeable K had been removed, are 40 μmol K kg?1 soil d?1 at 4 μM CK and 240 μmol kg?1 d?1 at 3 μM CK, respectively. It is concluded that larger quantities of interlayer K become plant available in the studied soil if the of soil solutions gets below 3.5 μM (for 10 mMc Ca, 20 °C, pH 5.8), probably because the dominant dioctahedral illites start to join the release process below this critical limit. The higher K concentration range was accounted for by K-Ca exchange isotherms which, by alteration of shape, indicate that Knex release becomes measurable below 10 to 20 μM K. It is further argued that existing diffusion or reaction kinetics approaches towards K release are incomplete because the influence of solute K is not considered.  相似文献   
12.
Comparison between percolation and extraction with 1 M NH4Cl solution to determine the effective cation exchange capacity (CECeff) of soils A simple method is proposed for the determination of the effective cation exchange capacity (CECeff). The soil is extracted with 1 M NH4Cl‐solution, manually shaken for three times, and the exchangeable cations are determined by ICP‐OES and pH‐measurement. Comparison with corresponding results of the percolation method (n = 110 samples) shows good agreement in reproducibility, exchangeable cations (except Fe and Na), base saturation and CECeff.  相似文献   
13.
利用木瓜芽孢进行愈伤组织的诱导,采用渗漉法对木瓜愈伤组织中的齐墩果酸进行了提取,然后用薄层层析法对齐墩果酸进行了分离,用比色法进行测定.筛选出最适合愈伤组织生长的培养基为,MS+2,4-D2.5 mg·L-1+6-BA 0.5 mg·L-1,木瓜愈伤组织中游离齐墩果酸的含量为0.078%.通过木瓜愈伤组织进行齐墩果酸的...  相似文献   
14.
Following soil fertilization, nitrogen (N) is partially lost. The objective of this study was to evaluate leaching and recovery of N after addition of fertilizers to the soil. Two experiments were conducted in leaching columns submitted to frequent water percolations. In the leaching experiment, urea, ammonium nitrate, and six coated N fertilizers were utilized; in the N recovery experiment, treatments consisted of urea, potassium nitrate, ammonium sulfate, and ammonium nitrate, combined or not with percolation. Percolations were performed weekly with quantification of ammonium and nitrate in the percolated. The recovered N was obtained by summing total N percolated with N in the soil. Nitrate leaching was highest from amide-N fertilizers, with no differences between them showing that coating urea was not efficient to decrease N leaching. Nitric fertilizers had the lowest recovery of N, probably due to the occurrence of denitrification caused by the frequent water percolation.  相似文献   
15.
Grass buffer strips limit the transfer of pesticides from cultivated fields to rivers. These solutions are generally efficient at reducing polluted surface flows, mainly by infiltration of the soil, raising the question of the fate of the infiltrated pollutants. An environmental evaluation was conducted on the efficiency of a grass strip receiving diuron-contaminated water from an uphill vineyard in France. During two runoff events, the following measurements were taken: surface inflow and outflow with Venturi flumes, vertical percolated flow below the root layer (0-50 cm), and variations in water and solute content of the root layer. One runoff event occurred under natural rainfall conditions, while the other runoff event was artificially provoked with water doped by diuron and bromide. For the natural runoff event, representative of medium intensity events, 94% of the diuron was retained in the root layer, whereas 2% left the grass strip by surface runoff and 4% left the grass strip in the water percolating under the root zone. For the artificial event, representative of intense runoff events, more than half of the incoming diuron was retained by the grass strip, whereas 24% and 18% of it were transferred by surface runoff and percolation, respectively. These results showed that the capacity of the root layer to retain diuron was highly significant despite a large percolation flux. However, for large runoff events, surface and subsurface losses can still be considerable, up to 40% of the pesticide load entering the strip.  相似文献   
16.
Abstract

Oxidation of methane and total water soluble organic carbon (TOC) in the subsoil, which percolated from the plow layer, was investigated in a column experiment. The amounts of both methane and TOC in the leachate decreased by percolation in the subsoil.

Fe2+ percolated from the plow layer was nearly completely retained in the subsoil. The decomposition of methane and TOC in the subsoil was considered to result in the coupling with the formation of Fe2+. Methane was estimated to contribute ca. 19–21% to the total amount of Fe2+ formed in the subsoil by the organic materials in the leachate.  相似文献   
17.
The microbiota in the percolating water from the plow layer soil in paddy fields was studied based on the composition of phospholipid fatty acids (PLFAs) in a pot experiment. The mean concentrations of PLFAs in the percolating water were 17±5 and 11±4 µg L-1 in the planted and non-planted pots, respectively. The dominant PLFAs in the percolating water were 16: 0, 16: 1ω7c, 18: 1ω7, 18: 1ω9, il5: 0, and ail5: 0 PLFAs in both the planted and non-planted pots. The dominance percentage of 18: 3ω6c and 17: 1ω8 PLFAs increased at the late stage of rice growth in the planted pots. The percolating water from the planted pots contained in a higher percentage of straight mono-unsaturated PLFAs and a lower percentage of branched-chain PLFAs than that from the non-planted pots. Considerable differences in the PLFA composition in the percolating water were observed between the planted and non-planted treatments and with the duration of the growth period. Principal component analysis indicated that the microbiota in the percolating water was derived from the microbiota in the floodwater and in the plow layer soil. Cluster analysis showed that the similarity of the PLFA composition in the percolating water to the PLFA composition in the plow layer soil was higher than that in the floodwater. The stress factor that was estimated from the trans/cis ratio of 16: 1ω7 PLFA was 0.08±0.04 and 0.14±0.05 in the percolating water from the planted and non-planted pots, respectively, which indicated that the degree of stress on the microbiota in the percolating water from the planted pots was low in a similar way to the degree of stress on the microbiota in the floodwater, while the degree in the percolating water from the non-planted pots was similar to that in the plow layer soil, respectively.  相似文献   
18.
The impacts of a leguminous summer cover crop (sunn hemp; Crotalaria juncea) on nitrogen leaching from a corn (Zea mays L.) field was evaluated by direct measurements of soil water content and nitrogen balance components, complemented by direct and inverse modeling as an exploratory tool to better understand water flow and nitrogen balances in the soil. Water and nitrogen inputs and outputs were measured during winter corn production in an experimental field located in the south Miami-Dade basin in southern Florida (USA). Data from the last two seasons (2001-2002 and 2002-2003) of a 4-year study are presented. The field was divided into six 0.13 ha plots. One-half of the plots were rotated with sunn hemp (CC plots) during the summer while the remaining plots were kept fallow (NC plots). Sweet corn management was uniform on all plots and followed grower recommended practices. A numerical model (WAVE) for describing water and agrochemical movement in the soil was used to simulate water and nitrogen balances in both types of plots during the corn seasons. The hydrodynamic component of WAVE was calibrated with soil water data collected continuously at three depths, which resulted in accurate soil water content predictions (coefficients of efficiency of 0.85 and 0.91 for CC and NC plots, respectively). Measured components of the nitrogen balance (corn yields, estimated nitrogen uptake, and soil organic nitrogen) were used to positively assess the quality of the nitrogen simulation results. Results of the modeled water balance indicate that using sunn hemp as a cover crop improved the soil physical conditions (increase in soil water retention) and subsequently enhanced actual crop evapotranspiration and reduced soil drainage. However, nitrogen simulation results suggest that, although corn nitrogen uptake and yields were slightly higher in the CC plots than in the NC plots, there were net increases of soil N content that resulted in increased N leaching to the shallow aquifer. Therefore, the use of sunn hemp as cover crop should be coupled with reductions in N fertilizer applied to the winter crop to account for the net increase in soil N content.  相似文献   
19.
以免耕和翻耕稻田为研究对象,通过大田试验与室内分析,研究了不同耕作方式下稻田田面水和渗漏水的淋溶损失及其对环境的影响。试验共设4个处理,分别是免耕+不施肥(NT0)、翻耕+不施肥(CT0)、免耕+复合肥(NTC)和翻耕+复合肥(CTC)。结果表明,施磷肥显著提高稻田田面水以及渗漏水各形态磷浓度。施磷肥2d后田面水总磷(TP)浓度、颗粒态磷(PP)浓度和溶解磷(DP)浓度即达到最大值,此后由于水中颗粒或表土对田面水磷素的固定,磷素的淋失,水稻生长吸收及前期的稻田排水和灌水稀释,1周后迅速降低并趋于稳定;渗漏水TP浓度和溶解磷(RP)浓度在施磷肥2d后达到最大值,渗漏水TP浓度在施肥后一个半月达到最低值,而渗漏水RP浓度在施肥4d后就降低到最低值。处理NTC田面水TP、DP与PP显著高于处理CTC,而处理NT0与处理CT0之间无差异;与翻耕相比,免耕不影响渗漏水TP与RP浓度及磷下渗淋失。对田面水磷素及渗漏水磷素变化动态分析表明,施磷肥后的1周左右是控制磷素流失的关键时期。  相似文献   
20.
保水、保肥性极差的风沙土广泛分布于和田地区,为探明滴灌条件下其灌水定额与深层渗漏量的关系以及确定适宜灌水定额,为和田地区设施农业的科学灌溉提供理论依据.以和田风沙土条件下日光温室萝卜地为研究对象,设置了5个灌水水平,开展定周期、变定额的灌溉试验,同时利用深层渗漏仪监测地面60 cm深度以下的深层渗漏量,分析了深层渗漏量...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号