首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3628篇
  免费   181篇
  国内免费   287篇
林业   554篇
农学   306篇
基础科学   242篇
  855篇
综合类   1476篇
农作物   140篇
水产渔业   97篇
畜牧兽医   240篇
园艺   83篇
植物保护   103篇
  2024年   19篇
  2023年   67篇
  2022年   112篇
  2021年   125篇
  2020年   90篇
  2019年   118篇
  2018年   92篇
  2017年   160篇
  2016年   160篇
  2015年   151篇
  2014年   192篇
  2013年   205篇
  2012年   271篇
  2011年   260篇
  2010年   217篇
  2009年   191篇
  2008年   173篇
  2007年   229篇
  2006年   183篇
  2005年   187篇
  2004年   133篇
  2003年   107篇
  2002年   100篇
  2001年   107篇
  2000年   83篇
  1999年   52篇
  1998年   52篇
  1997年   33篇
  1996年   41篇
  1995年   28篇
  1994年   31篇
  1993年   23篇
  1992年   16篇
  1991年   17篇
  1990年   20篇
  1989年   14篇
  1988年   22篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1982年   1篇
  1980年   2篇
  1974年   1篇
排序方式: 共有4096条查询结果,搜索用时 15 毫秒
11.
木耳菌糠袋栽滑菇配方研究   总被引:1,自引:0,他引:1  
本试验采用不同比例的木耳菌糠替代部分木屑袋栽滑菇,以培养料(木屑89%、麦麸10%、石膏1%)为对照,探讨木耳菌糠栽培滑菇的可行性。结果表明,木耳菌糠添加量25%~45%时,可缩短发菌天数,其中菌糠添加量为45%时,满袋天数仅需52 d,并且长势较好;但菌糠添加量为55%~65%时,则延长了发菌天数,而且菌丝稀疏,长势也弱。对照(CK)与木耳菌糠添加量是25%~45%时,子实体生长良好,并且出菇整齐;菌糠添加量为55%~65%,则出菇不整齐。CK的生物学效率最高,但配方4(菌糠45%、木屑34%、麦麸10%、石膏1%)的生物学效率与CK差异不大,从成本和生态效益考虑,配方4栽培滑菇具有可行性,并已在广灵县进行推广。  相似文献   
12.
The material flow and bulk internal flow analyses were used to establish a material accumulation and cycling model for a low-quality forest stand improvement system and a series of processes were considered. The model was applied in a one-hectare low-quality forest plot in the Lesser Khingan Range of China. Results showed that during 1997–2007, the stands absorbed 270.19 kg of N, 74.28 kg of P, and 124.39 kg of K from soils, 51.82 kg of N and 2.38 kg of P were directly absorbed by foliage, and 16.25 kg of K was released to soils by eluviation. Until 2007, the accumulated nutrients in the stands included 236.91 kg of N, 65.28 kg of P, and 108.55 kg of K. When horizontal strip clearcutting was applied in 2007, 50% accumulated nutrients in the stands were shifted due to harvesting operations, and 212.74 kg of N, 26.97 kg of P, and 98.88 kg of K were accumulated in soils, declining by 9.47% for N, 3.68% for P, and 17.60% for K, respectively, compared with year 1997. 94.61 t per hectare of biomass was generated, of which the biomass in stands accounted for 87.36%. The felled tree biomass was 36.89 t per hectare, of which 84.90% and 10.03% of biomass were utilized in terms of logs and other means, and the rest was left on site.  相似文献   
13.
结合螺旋板式换热器的应用领域及其板材折边生产现状,分析了其生产弊端。针对板材折边工艺要求,研发了粮食烘干塔换热器智能折边设备,并剖析其工作机理。根据典型产品结构参数,设计智能折边装备总体装配图并计算主要零件参数,为智能折边装备制作提供理论依据,从而实现换热器板材折边智能加工,提高换热器卷板折边质量及精度。  相似文献   
14.
Agricultural soils are important sources of greenhouse gases (GHGs). Soil properties and environmental factors have complex interactions which influence the dynamics of these GHG fluxes. Four arable and five grassland soils which represent the range of soil textures and climatic conditions of the main agricultural areas in the UK were incubated at two different moisture contents (50 or 80% water holding capacity) and with or without inorganic fertiliser application (70 kg N ha−1 ammonium nitrate) over 22 days. Emissions of N2O, CO2 and CH4 were measured twice per week by headspace gas sampling, and cumulative fluxes were calculated. Multiple regression modelling was carried out to determine which factors (soil mineral N, organic carbon and total nitrogen contents, C:N ratios, clay contents and pH) that best explained the variation in GHG fluxes. Clay, mineral N and soil C contents were found to be the most important explanatory variables controlling GHG fluxes in this study. However, none of the measured variables explained a significant amount of variation in CO2 fluxes from the arable soils. The results were generally consistent with previously published work. However, N2O emissions from the two Scottish soils were substantially more sensitive to inorganic N fertiliser application at 80% water holding capacity than the other soils, with the N2O emissions being up to 107 times higher than the other studied soils.  相似文献   
15.
Increasing soil carbon (C) in arable soils is an important strategy to achieve sustainable yields and mitigate climate change. We investigated changes in soil organic and inorganic carbon (SOC and SIC) under conservation agriculture (CA) in a calcareous soil of the eastern Indo-Gangetic Plains of India. The treatments were as follows: conventional-till rice and wheat (CT-CT), CT rice and zero-till wheat (CT-ZT), ZT direct seeded rice (DSR) and CT wheat (ZT-CT), ZTDSR and ZT wheat without crop residue retention (ZT-ZT), ZT-ZT with residue (ZT-ZT+R), and DSR and wheat both on permanent beds with residue (PB-PB+R). The ZT-ZT+R had the highest total SOC in both 0–15 and 15–30 cm soil layers (20% and 40% higher (p < .05) than CT-CT, respectively), whereas total SIC decreased by 11% and 15% in the respective layers under ZT-ZT+R compared with CT-CT. Non-labile SOC was the largest pool, followed by very labile, labile and less labile SOC. The benefits of ZT and residue retention were greatest for very labile SOC, which showed a significant (p < .05) increase (~50%) under ZT-ZT+R compared with CT-CT. The ZT-ZT+R sequestered ~2 Mg ha−1 total SOC in the 0–15 cm soil layer in 6 years, where CT registered significant losses. Thus, the adoption of CA should be recommended in calcareous soils, for C sequestration, and also as a reclamation technique.  相似文献   
16.
通过对家庭居室不同空间特点的分析,根据家庭绿化的趋势,从绿化植物材料的适应性、观赏性、生态性和经济性方面探讨了家庭绿化材料的选择,以期为居室绿化提供参考依据。  相似文献   
17.
硒肥与钝化材料组配对土壤Cd钝化及稻米Cd消减效果   总被引:1,自引:0,他引:1  
为了探讨不同硒肥施用方式联合钝化材料对土壤镉钝化和稻米镉消减的效果,采用盆栽试验的方式,选用亚硒酸钠作为硒肥,钙镁磷肥和硅藻土作为钝化材料,设置基施硒肥+钙镁磷肥+硅藻土和叶面喷施硒肥+钙镁磷肥+硅藻土2种方式,研究其不同用量对镉污染酸性稻田土壤修复与安全利用的影响。结果表明:随着施用量的增加,稻米产量增加,基施硒肥产量略高于叶面喷施硒肥,产量差为 2.115 g/pot,与对照(CK)相比,基施0.28%钙镁磷肥+0.12%硅藻土+0.004‰硒(T3)能够提高1.68倍的稻米产量;随着施用量的增加,pH升高,有效Cd降低,有机质与CEC变化不大;基施硒肥与叶面喷施硒肥处理对土壤pH、有机质与CEC差异不显著,但基施硒肥处理有效Cd含量略低于叶面喷施硒肥处理,T3对土壤Cd的钝化效果最佳;随着基施硒肥用量的增加,稻米Cd含量降低,随着叶面喷施硒肥用量的增加,稻米Cd含量先降低后升高,基施硒肥处理对稻米Cd的消减程度强于叶面喷施硒肥处理,相差 0.021 mg/kg,与对照(CK)相比,T3处理稻米Cd降低0.063 mg/kg。可见,硒对调控稻米镉累积具有重要作用,且基施硒肥强于叶面喷施。综上所述,基施0.28%钙镁磷肥+0.12%硅藻土+0.004‰硒对土壤Cd钝化与稻米Cd消减的效果最佳,值得在镉污染稻田推广应用。  相似文献   
18.
Biochar addition can expand soil organic carbon (SOC) stock and has potential ability in mitigating climate change. Also, some incubation experiments have shown that biochar can increase soil inorganic carbon (SIC) contents. However, there is no direct evidence for this from the field experiment. In order to make up the sparseness of available data resulting from the long‐term effect of biochar amendment on soil carbon fractions, here we detected the contents and stocks of the bulk SIC and SOC fractions based on a 10‐year field experiment of consecutive biochar application in Shandong Province, China. There are three biochar treatments as no‐biochar (control), and biochar application at 4.5 Mg ha?1 year?1 (B4.5) and 9.0 Mg ha?1 year?1 (B9.0), respectively. The results showed that biochar application significantly enhanced SIC content (3.2%–24.3%), >53 μm particulate organic carbon content (POC, 38.2%–166.2%) and total soil organic carbon content (15.8%–82.2%), compared with the no‐biochar control. However, <53 μm silt–clay‐associated organic carbon (SCOC) content was significantly decreased (14%–27%) under the B9.0 treatment. Our study provides the direct field evidence that SIC contributed to carbon sequestration after the biochar application, and indicates that the applied biochar was allocated mainly in POC fraction. Further, the decreased SCOC and increased microbial biomass carbon contents observed in field suggest that the biochar application might exert a positive priming effect on native soil organic carbon.  相似文献   
19.
Emissions of N2O were measured following addition of 15N‐labelled residues of tropical plant species [Vigna unguiculata (cowpea), Mucuna pruriens and Leucaena leucocephala] to a Ferric Luvisol from Ghana at a rate of 100 mg N/kg soil under controlled environment conditions. Residues were also applied in different ratio combinations with inorganic N fertilizer, at a total rate of 100 mg N/kg soil. N2O emissions were increased after addition of residues, and further increased with combined (ratio) applications of residues and inorganic N fertilizer. However, 15N‐N2O production was low and short‐lived in all treatments, suggesting that most of the measured N2O‐N was derived from the applied fertilizer or native soil mineral N pools. There was no consistent trend in magnitude of emissions with increasing proportion of inorganic fertilizer in the application. The positive interactive effect between residue‐ and fertilizer‐N sources was most pronounced in the 25:75 Leucaena:fertilizer and cowpea:fertilizer treatments where 1082 and 1130 mg N2O‐N/g residue were emitted over 30 days. N2O (loge) emission from all residue amended treatments was positively correlated with the residue C:N ratio, and negatively correlated with residue polyphenol content, polyphenol:N ratio and (lignin + polyphenol):N ratio, indicating the role of residue chemical composition in regulating emissions even when combined with inorganic fertilizer. The positive interactive effect in our treatments suggests that it is unlikely that combined applications of residues and inorganic fertilizer can lower N2O emissions unless the residue is of very low quality promoting strong immobilisation of soil mineral N.  相似文献   
20.
建立高效液相色谱法检测天然植物粗提物饲料原料中芍药苷的测定方法。用十八烷基硅烷键合硅胶色谱柱,以乙腈-0.1%磷酸溶液(14:86)为流动相,检测波长230nm,流速:1.0 mL/min;柱温:30 ℃;进样量:10μL。结果显示,芍药苷的线性方程为Y=10.6017X-14.8514,(r=0.99966,n=6),本方法的回收率为100.4~102.1%,RSD均小于2.0%。结果表明,本方法准确,可靠,适用于天然植物粗提物饲料原料中芍药苷的测定。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号