全文获取类型
收费全文 | 1420篇 |
免费 | 57篇 |
国内免费 | 288篇 |
专业分类
林业 | 195篇 |
农学 | 88篇 |
基础科学 | 273篇 |
336篇 | |
综合类 | 649篇 |
农作物 | 24篇 |
水产渔业 | 25篇 |
畜牧兽医 | 91篇 |
园艺 | 16篇 |
植物保护 | 68篇 |
出版年
2024年 | 29篇 |
2023年 | 83篇 |
2022年 | 67篇 |
2021年 | 76篇 |
2020年 | 87篇 |
2019年 | 67篇 |
2018年 | 53篇 |
2017年 | 69篇 |
2016年 | 83篇 |
2015年 | 68篇 |
2014年 | 68篇 |
2013年 | 69篇 |
2012年 | 123篇 |
2011年 | 95篇 |
2010年 | 106篇 |
2009年 | 95篇 |
2008年 | 54篇 |
2007年 | 71篇 |
2006年 | 72篇 |
2005年 | 55篇 |
2004年 | 44篇 |
2003年 | 29篇 |
2002年 | 36篇 |
2001年 | 23篇 |
2000年 | 21篇 |
1999年 | 21篇 |
1998年 | 18篇 |
1997年 | 14篇 |
1996年 | 9篇 |
1995年 | 9篇 |
1994年 | 13篇 |
1993年 | 6篇 |
1992年 | 6篇 |
1991年 | 7篇 |
1990年 | 7篇 |
1989年 | 7篇 |
1988年 | 1篇 |
1987年 | 3篇 |
1986年 | 1篇 |
排序方式: 共有1765条查询结果,搜索用时 15 毫秒
121.
针对番茄早期缺素性状不明显及各生长期特征差异较大所导致的特征区域尺寸不一致、难提取、难辩别等问题,提出了一种基于注意力机制及多尺度特征融合卷积神经网络的番茄叶片缺素图像分类方法(Multi-Scale Feature Fusion Convolutional Neural Networks Based On Atte ntion Mechanism,MSFF-AM-CNNs)。首先根据番茄叶片缺素特点提出了多尺度特征融合结构(Multi-Scale Feature Fusion Module,MSFF Module);其次在DenseNet基础上,结合浅层网络主要提取纹理、细节特征,深层网络主要提取轮廓、形状特征的特点分别提出具有针对性的特征提取方法,通过不同形式引入注意力机制及多尺度特征融合结构,使全局多尺度信息融合多个特征通道、选择性地强调信息特征并达到对特征精准定位的功能;同时引入Focal Loss函数以减少易分类样本的权重。试验结果表明,MSFF-AM-CNNs的平均召回率、平均F1得分、平均准确率较原模型DenseNet-121均大幅提升,其中缺氮和缺钾叶片的准确率分别提高了8.06和6.14个百分点,召回率分别提高了6.31和5.00个百分点,F1得分分别提高了7.25和5.55个百分点,平均识别准确率可达95.92%,具有较高的识别准确率及广泛的适用性,能够满足番茄叶片缺素图像的高精度分类需求,可为植物叶片缺素识别提供参考。 相似文献
122.
123.
基于机器视觉的马铃薯晚疫病快速识别 总被引:1,自引:6,他引:1
晚疫病是马铃薯的一种严重病害,可造成减产甚至绝收。因此马铃薯晚疫病的识别与控制对提高其产量有非常重要的意义。该文基于机器视觉技术对马铃薯叶部晚疫病进行检测,根据马铃薯叶片上晚疫病斑的颜色、纹理和形状特征参数的不同,提取叶片表面的特征参数,并建立数学模型对病害程度做出评价。在RGB、HSV颜色空间中,根据马铃薯叶片在患病早期叶片颜色发生变化且与健康叶片不同,利用颜色特征,建立马铃薯晚疫病的无病和患病模型,该模型对马铃薯患病早期的识别率为67.5%。利用灰度共生矩阵,采用纹理统计参数进行病害等级评价,用熵值和能量值描述晚疫病的严重程度,纹理特征对患病程度的识别率比较稳定,对患病中期与后期的识别率分别为72.5%与80%。利用形状特征的相对特征,根据病斑面积比进行晚疫病诊断,该方法对马铃薯叶片晚疫病患病后期的诊断取得较好效果,识别率为90%,但由于叶片患病早期的病斑面积小且分散,识别难度大,识别率仅为50%。针对颜色、纹理及形状特征在识别马铃薯叶片晚疫病时的优势与局限性,提出颜色纹理形状特征结合的识别方法,对患病中期与后期的识别率分别为90%和92.5%。通常马铃薯晚疫病的理化值检测法耗时数天,但利用机器视觉识别马铃薯晚疫病患病情况非常快速,根据颜色特征进行病害识别的时间约为4 s,纹理特征识别的时间为7 s,形状特征特征识别的时间为3 s,综合颜色纹理形状特征的识别由于计算量较大,识别时间为9 s。该研究可为基于机器视觉的马铃薯晚疫病的快速检测提供理论依据。 相似文献
124.
多源遥感信息和特征优选是提高农作物识别精度的重要支撑,高分六号(GF-6)卫星作为首次引入红边波段的国产卫星,其丰富的光谱信息为作物识别提供了新的思路和解决途径。该研究基于宁夏回族自治区银川市永宁县2018年6月—2019年3月的GF-6数据,充分利用红边优势提取光谱特征、纹理特征和植被指数特征,构建多种特征组合方案,并根据随机森林算法对特征重要性进行度量,选取最优特征组合对酿酒葡萄进行精准识别。结果表明,与单一特征相比,多源遥感特征的增加显著改善了酿酒葡萄分类效果,其中,植被指数贡献程度最大,光谱特征次之;基于随机森林的优选特征组合分类效果最佳,其中,总体分类精度为94.15%,酿酒葡萄用户精度为94.23%,制图精度为92.59%;以实地调查的4个酒庄为验证区,将酿酒葡萄提取结果与统计数据进行对比,面积相对精度均在70%以上,其中优选特征结果相对精度在90%以上,研究结果将为国产卫星红边波段在植被分类和识别方面的应用提供数据参考。 相似文献
125.
HYDRUS模型与遥感集合卡尔曼滤波同化提高土壤水分监测精度 总被引:2,自引:2,他引:2
精确地估测干旱区土壤水分含量,对该区域的农业发展与水土保持具有重要意义。该文以MODIS与Landsat TM数据为数据源,利用其反演获得的条件温度植被指数(temperature-vegetation drought Index,TVDI)作为观测算子,将集合卡尔曼滤波(ensemble Kalman filter,En-KF)同化方法应用于水文模型(HYDRUS-1D),进行干旱区表层土壤水分的模拟。结果表明:遥感数据反演土壤水分所构建的二维特征空间TVDI与表层土壤水分有较好的一致性;En-KF同化方法对模型变量与观测算子的更新,与单纯使用HYDRUS模型相比,获得的表层土壤水分含量精度有了明显提高,其均方根误差缩小了1个百分点,平均误差缩小了5个百分点。可见,基于多源遥感数据对表层土壤水分的En-KF同化模拟在干旱区具有较大的潜力,是提高干旱区土壤水分含水量监测精度的有效手段。 相似文献
126.
近年来,对将传感器阵列技术和模式识别技术用于识别食品挥发气味的研究方兴未艾。模式识别技术的实施主要依赖于对传感器阵列输出信号的参数表达,迄今为止,不论是单个传感器还是传感器阵列均没有通用的参数选择的方法。该文从8个氧化锡气敏传感器与食醋气味反应中提出初始特征值,采用一种基于公式表达树的遗传基因块代码的编码算法的组织特征参数法(OFP)对所提取的特征参数进行融合,从而得到最优的组织特征参数很容易区分不同的气味。它不但解决了怎样得到最优特征参数的问题,而且用这种算法进行遗传运算更直观、更方便。并详细讨论了怎样进行基因编码来融合不同特征参数,同时对这种遗传算法怎样进行选择、交叉、变异进行了研究。将其用于气敏传感器阵列对不同食醋识别的应用实例证明,该方法是一种非常有效的模式识别方法 相似文献
127.
类别辅助变量参与下的土壤无偏采样布局优化方法 总被引:2,自引:1,他引:2
为了提高采样点在地理空间和辅助变量特征空间中的代表性,该文提出特征空间偏离指数用以测度采样点在特征空间中的无偏性,采用类别型辅助变量参与下的多维特征空间构建方法,融合地理空间和特征空间均匀分布的多目标优化目标函数,并利用空间模拟退火的方法实现采样点布局优化。以北京顺义区农田土壤重金属采样为例,选取土地利用类型、土壤质地和母质为辅助变量进行样点布局优化,并与特征空间均匀和地理空间均匀采样方法比较,结果表明:用于区域变量总体估计时,地理空间均匀采样估计精度最低,在采样尺度大于0.275时以特征空间均匀采样估计精度最好,而在采样尺度小于0.275时,无偏采样能获得更好的估计结果;在特征空间代表性方面,采样尺度较大时特征空间均匀采样样点代表性最好,采样尺度小于0.302时,无偏采样与特征空间均匀采样的代表性基本一致,地理空间采样点的代表性最差;用于空间制图时,无偏采样总体上比其他2种方法具有更好的制图精度。可见,在辅助变量支持的采样优化中,当采样尺度大且样点数较少时,适合采用特征空间均匀方法,且只能用于总体估计;采样尺度较小,样点数多时,适合采用无偏采样方法。该研究为利用辅助变量设计区域采样布局提供参考。 相似文献
128.
及时、准确预测棉花产量在棉田经营管理、农业决策制定等方面具有重要的价值和意义。为了提高棉花产量预测精度并确定估产的最佳生育时期,该研究利用谷歌地球引擎(Google Earth Engine,GEE)获取2020年Sentinel-2A的3个时间段影像,采用随机森林(Radom Forest, RF)、支持向量机(Support Vector Machine, SVM)、决策树(Classification and Regression Tree, CART)进行棉花种植区域提取,利用顺序向前选择(Sequential Forward Selection, SFS)和偏最小二乘算法(Partial Least Squares Regression, PLSR)确定棉花产量预测最佳生育时期,最终形成莫索湾垦区棉花产量预测分布图。结果表明,1)RF分类效果最佳,农田与非农田分类总体精度为0.94,Kappa 系数为0.89;棉田与非棉田分类总体精度为0.92,Kappa 系数为0.83。2)红边波段(B6)在3个生育时期中与产量相关性较好,相关系数随着生育时期的递进而增加,分别为0.37、0.47、0.53。3)基于PLSR构建的产量预测模型中,铃期预测效果最佳(决定系数R2=0.62,均方根误差RMSE=625.5 kg/hm2,相对误差RE=8.87%),优于吐絮期(R2=0.51,RMSE=789.45 kg/hm2,RE=11.06%)和花期(R2=0.48,RMSE=686.4 kg/hm2,RE=9.86%),铃期为棉花产量预测的最佳生育时期。该研究利用GEE和Sentinel-2A影像数据,为新疆莫索湾垦区棉花种植面积提取及产量预测提供一种新的思路,可为合理水肥配置、精准种植、农作物生长过程监测提供数据支撑。 相似文献
129.
基于多层感知神经网络的水稻叶瘟病识别方法 总被引:1,自引:2,他引:1
为实现水稻叶瘟病的快速诊断,综合利用图像处理技术和神经网络来进行叶瘟病斑的识别研究。该文设计了3个多层感知分类器来进行病斑识别准确率的对比验证,分别采用叶片正常区域和病斑区域的纹理特征、颜色特征以及纹理和颜色的组合特征作为不同分类器的输入单元;输出层采用1个单元用于输出病斑区域和正常区域的识别结果。首先,该文将采集到的RGB图像转换成灰度图像,利用灰度共生矩阵分别提取叶片正常区域与病斑区域的能量、对比度、熵、逆差距作为纹理特征;紧接着,将RGB彩色空间转换至HIS和Lab空间,分别提取病斑区域和正常区域的L、a、b值作为颜色特征。最后,采用不同的BP神经网络分类器进行病斑区域识别。该文共采用120副图像作为待测对象,试验结果表明,采用颜色和纹理的组合特征进行识别,准确率要比单独使用纹理特征和颜色特征高10%~15%。本文的研究结果为进一步实现水稻病害自动诊断打下了基础。 相似文献
130.
结合地面测试高光谱数据及卫星遥感数据,对矿区地物信息进行提取,可有助于快速获取矿区地表信息,为矿区废弃地植被恢复提供辅助决策信息支持具有重要意义。该文以阜新市海州矿区排土场为研究对象,对不同波段组合的SPOT-5遥感影像进行了分类方法和分类精度评价研究。结果表明:排土场影像在波段组合与融合之后进行分类,分类精度提高不明显;而通过组合SPOT多光谱影像和植被指数图像,并结合地面测试的高光谱特征曲线建立分类模板,可以有效地提高地物分类精度,总体分类精度为85.48%,Kappa系数为0.8197。分类结果满足对排土场地物调查的实际需要,为建立排土场植被恢复等级提供了数据基础。 相似文献