首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10877篇
  免费   692篇
  国内免费   961篇
林业   1421篇
农学   654篇
基础科学   235篇
  4168篇
综合类   3838篇
农作物   398篇
水产渔业   345篇
畜牧兽医   708篇
园艺   155篇
植物保护   608篇
  2024年   163篇
  2023年   397篇
  2022年   518篇
  2021年   483篇
  2020年   475篇
  2019年   537篇
  2018年   409篇
  2017年   620篇
  2016年   753篇
  2015年   607篇
  2014年   715篇
  2013年   849篇
  2012年   946篇
  2011年   849篇
  2010年   572篇
  2009年   545篇
  2008年   440篇
  2007年   440篇
  2006年   410篇
  2005年   327篇
  2004年   232篇
  2003年   197篇
  2002年   139篇
  2001年   127篇
  2000年   109篇
  1999年   84篇
  1998年   92篇
  1997年   69篇
  1996年   58篇
  1995年   74篇
  1994年   50篇
  1993年   59篇
  1992年   43篇
  1991年   17篇
  1990年   35篇
  1989年   25篇
  1988年   13篇
  1987年   8篇
  1986年   11篇
  1985年   9篇
  1984年   8篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1955年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
为合理经营黄土高原区刺槐人工林,利用LAI-2200植物冠层分析仪,研究了不同密度刺槐人工林冠层结构特征及月变化。结果表明:密度对LAI(叶面积指数)有影响,随着密度的增加,林分叶面积指数趋于一致;在生长月份上,LAI为先增后降趋势,最大值出现在6月底。密度与冠层开度呈显著负相关,随着密度的增加,刺槐林DIFN明显降低,925~1 125株/hm2与其他3个密度林分有显著性差异;DIFN(无截取散射)随月份的变化均呈"V"字型变化,在6月底至8月初DIFN最低。密度与MTA(平均叶倾角)呈显著正相关,密度在925~1 125株/hm2范围的刺槐林分,叶片几乎处于水平状态,其他3种密度林分MTA均在40°~50°之间有最大分布频率,而月份对MTA影响不显著。对叶面积指数与冠层开度进行回归分析,发现两者之间呈指数回归关系(R2=0.998)。  相似文献   
962.
关帝山森林土壤有机碳和氮素的空间变异特征   总被引:3,自引:0,他引:3       下载免费PDF全文
在庞泉沟自然保护区选择3个生态功能区设置典型样地,运用经典统计学和地统计学方法研究了森林土壤有机碳、全氮及碳氮比的空间变异特征及分布格局.结果表明,随着生态系统由人工林→次生演替早期杨桦阔叶林→次生演替中后期云杉、杨、桦混交林顺向演替,土壤有机碳和全氮平均值先增加后减小,碳氮比平均值呈逐渐减小趋势.3指标变异系数在11...  相似文献   
963.
土地利用方式对土壤有机碳和碳库管理指数的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
土壤碳库管理指数反映土壤管理的科学性.对比研究了干热河谷新银合欢林、苏门答腊金合欢林、大叶相思林、印楝林、荒地和旱耕地土壤有机碳(SOC)、易氧化有机碳(ROC)含量和土壤碳库管理指数.结果表明:6种土地利用方式下SOC和ROC含量范围分别为4.22~5.92 g·kg-1和1.34~2.33 g·kg-1.各利用方式...  相似文献   
964.
基于回归与随机模拟的区域森林碳分布估计方法比较   总被引:1,自引:0,他引:1  
以临安市为例,利用2004年森林资源清查样地数据和同年度Landsat TM影像数据,采用一元二次非线性回归和序列高斯协同模拟方法分别模拟森林地上部分碳密度及其分布,并对模拟结果进行比较分析。结果表明:一元二次非线性回归估计得研究区森林碳储量为2365404.37t,碳密度平均值为9.0000t·hm-2,最大值为73.7144t·hm-2,最小值为0.7156t·hm-2;序列高斯协同模拟得研究区森林碳储量为3291659.83t,碳密度平均值为12.5233t·hm-2,最大值为78.9133t·hm-2,最小值为0.0833t·hm-2;根据2004年森林资源清查样地数据,按随机抽样方法估计研究区森林碳储量为2708897.90t,样地碳密度平均值为10.3065t·hm-2,其最大值为96.9625t·hm-2,最小值为0;序列高斯协同模拟结果更接近地面样地估计结果,而且碳密度分布范围更合理;一元二次非线性回归估计结果与地面样地估计结果之差的累积平方和为9857.4619,而序列高斯协同模拟结果与实测结果之差的累积平方和为8018.4625;序列高斯协同模拟较一元二次非线性回归在估计区域森林碳空间分布...  相似文献   
965.
洪雅县退耕竹林碳储量时空格局   总被引:2,自引:0,他引:2  
建立退耕还林重点示范县洪雅县竹林碳储量多元线性回归遥感模型,基于碳储量遥感模型估算出四川省洪雅县退耕还林以前(1994年)、退耕还林后第4年(2004年)和退耕还林后第7年(2007年)的竹林碳储量,利用地理信息系统软件对竹林碳储量的时空格局变化进行定量分析。结果表明:13年间(1994—2007年)洪雅县竹林碳储量和面积均呈现逐年上升趋势,前期(1994—2004年)增速大于后期(2004—2007年);竹林碳储量和面积分布规律相似,都呈现出向低海拔、平缓坡和各坡向发展的趋势,其中2004年>25°坡度区域竹林碳储量和面积变化最明显,2004年>25°坡度区域竹林碳储量增加量占总增加量的79.53%,竹林面积增加量占总增加量的78.18%,表明退耕还林工程的实施是区域竹林碳储量与面积增加的驱动力;竹林碳密度呈现先降后升总体略微降低的特点,1994年碳密度最高为33.76tC·hm-2,2004年下降为33.25tC·hm-2,2007年又恢复到33.67tC·hm-2;利用克里金插值(Kriging)对模型进行优化可在一定程度上提高预测精度。  相似文献   
966.
粗木质残体(CWD)是森林生态系统重要的组成要素,由于定量研究某特定区域CWD的贮量和碳量的工作量相当大,需要长期的研究才能获得可信的数据,因此有关全球森林生态系统CWD的贮量和碳量仍不太清楚.本文根据国内外研究结果综述全球不同森林中CWD的贮量和碳库情况.结果表明:温带针叶林CWD贮量最高(30~200 t·hm-2),而阔叶林最低(8~50 t·hm-2);全球森林CWD碳贮量范围大致为75~114或157 Pg.各森林CWD贮量值变化大,因林龄、CWD分解阶段和人类经营活动(如疏伐、皆伐和控制火烧)而异.今后需更广泛地开展森林CWD调查,以更深刻理解CWD与林分结构、树种特性及干扰的关系.此外,为了更准确地评价CWD在森林生态系统中的生态价值,建议在更大尺度上对全球各类森林的CWD贮量和碳库进行长期的研究.  相似文献   
967.
CMC粘接法制备柱状成型活性炭   总被引:1,自引:0,他引:1  
以羧甲基纤维素钠(CMC)为粘接剂制备了柱状成型活性炭,研究了炭化温度、CMC添加量对产物吸附性能、孔结构及强度的影响。结果表明,随着炭化温度的升高,柱状成型活性炭的比表面积、亚甲基蓝吸附值和碘吸附值均呈现下降趋势;随着CMC添加量的增加,柱状成型活性炭的比表面积、总孔容、微孔容、平均孔径及亚甲基蓝吸附值、碘吸附值及对甲苯的吸附能力均逐渐降低,其强度逐渐增大。CMC粘接法制备柱状成型活性炭的最佳工艺为炭化温度200℃,CMC添加量10%,产物比表面积可达844.9 m2/g,亚甲基蓝吸附值和碘吸附值分别为189.2及968.2 mg/g,强度可达99.83%,甲苯的吸附率达65.5%。  相似文献   
968.
969.
Soil carbon (C) stocks in forest ecosystems have been widely estimated to a fixed soil depth (i.e., 0-30 cm) to clarify temporal changes in the C pool. However, surface elevations change as a result of compaction or expansion of the soil under forest management and land use. On the other hand, the calculation of soil C stocks based on “equivalent soil mass” is not affected by compaction or expansion of forest soil. To contribute to the development of a forest C accounting methodology, we compared changes in soil C stocks over 4 years between depth- and mass-based approaches using original soil data collected at 0-30 cm depths in young plantations and secondary forests in West Java, Indonesia. Our methodology expanded on the mass-based approach; rather than using one representative value for the mass-based calculation of soil C stocks, we adjusted individual values, maintaining the coefficient of variance in soil mass. We also considered the effect of an increase or decrease in soil organic matter on equivalent soil mass. Both increasing and decreasing trends in soil C stocks became clearer when the mass-based approach was used rather than the depth-based approach. The trends in soil C stocks based on equivalent soil mass were particularly evident in the surface soil layers (0-5 cm) and in plantation sites, compared with those for soil profiles including subsurface soil layers (0-30 cm) and in secondary forests. These trends in soil C stocks corresponded with temporal trends in litter stocks. We suggest that equivalent mass-basis soil C stock for the upper 30 cm of soil be calculated based on multiple soil layers to reduce estimation errors. Changes in soil organic matter mass had little effect on the estimation of soil C stock on an equivalent mass basis. For the development of a forest C accounting system, the mass-based approach should be used to characterize temporal trends in soil C stocks and to improve C cycle models, rather than simpler methods of calculating soil C stocks. These improvements will help to increase the tier level of country-specific forest C accounting systems.  相似文献   
970.
Growing interest in the use of planted forests for bioenergy production could lead to an increase in the quantities of harvest residues extracted. We analysed the change in C and N stocks in the forest floor (LFH horizon) and C and N concentrations in the mineral soil (to a depth of 0.3 m) between pre-harvest and mid-rotation (stand age 15 years) measurements at a trial site situated in a Pinus radiata plantation forest in the central North Island, New Zealand. The impacts of three harvest residue management treatments: residue plus forest floor removal (FF), residue removal (whole-tree harvesting; WT), and residue retention (stem-only harvesting; SO) were investigated with and without the mean annual application of 190 kg N ha−1 year−1 of urea-N fertiliser (plus minor additions of P, B and Mg). Stocks of C and N in the forest floor were significantly decreased under FF and WT treatments whereas C stocks and mass of the forest floor were significantly increased under the SO treatment over the 15-year period. Averaged across all harvesting treatments, fertilisation prevented the significant declines in mass and C and N stocks of the forest floor which occurred in unfertilised plots. The C:N ratio of the top 0.1 m of mineral soil was significantly increased under the FF treatment corresponding to a significant reduction in N concentration over the period. However, averaged across all harvesting treatments, fertilisation prevented the significant increase in C:N ratio of the top 0.1 m of mineral soil and significantly decreased the C:N ratio of the 0-0.3 m depth range. Results indicate that residue extraction for bioenergy production is likely to reduce C and N stocks in the forest floor through to mid-rotation and possibly beyond unless fertiliser is applied. Forest floors should be retained to avoid adverse impacts on topsoil fertility (i.e., increased C:N ratio). Based on the rate of recovery of the forest floor under the FF treatment, stocks of C and N in the forest floor were projected to reach pre-harvest levels at stand age 18-20. While adverse effects of residue extraction may be mitigated by the application of urea-N fertiliser, it should be noted that, in this experiment, fertiliser was applied at a high rate. Assessment of the sustainability of harvest residue extraction over multiple rotations will require long-term monitoring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号