首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2462篇
  免费   80篇
  国内免费   319篇
林业   209篇
农学   385篇
基础科学   47篇
  546篇
综合类   857篇
农作物   433篇
水产渔业   8篇
畜牧兽医   149篇
园艺   195篇
植物保护   32篇
  2024年   18篇
  2023年   41篇
  2022年   54篇
  2021年   63篇
  2020年   52篇
  2019年   48篇
  2018年   46篇
  2017年   85篇
  2016年   123篇
  2015年   91篇
  2014年   107篇
  2013年   176篇
  2012年   154篇
  2011年   211篇
  2010年   163篇
  2009年   183篇
  2008年   172篇
  2007年   209篇
  2006年   169篇
  2005年   123篇
  2004年   90篇
  2003年   72篇
  2002年   51篇
  2001年   47篇
  2000年   37篇
  1999年   38篇
  1998年   26篇
  1997年   26篇
  1996年   33篇
  1995年   24篇
  1994年   26篇
  1993年   27篇
  1992年   16篇
  1991年   8篇
  1990年   8篇
  1989年   9篇
  1988年   15篇
  1987年   13篇
  1986年   3篇
  1985年   2篇
  1963年   2篇
排序方式: 共有2861条查询结果,搜索用时 31 毫秒
991.
4种内源激素在中美山杨组培生根过程中的变化   总被引:1,自引:0,他引:1  
研究了生根率差别较大的中美山杨4个杂种无性系生根过程中4种内源激素的变化。结果表明,各无性系初始内源IAA、ZR含量与试管苗生根率呈正相关,初始内源ABA、GA含量与试管苗生根率呈负相关;内源IAA水平在生根的早期有一个峰值,其出现的时间与生根时间先后一致,并且峰值高低与生根率高低呈正相关;在根原基形成过程中ABA浓度不断的降低,待不定根生成后各无性系变化规律不同;在根原基形成分化期ZR含量呈上升趋势;生根率不同的无性系在生根过程中内源GA含量低且变化幅度小,对生根影响作用较小。通过相关性分析证明,诱导生根第0天IAA含量与生根率的相关关系最大。  相似文献   
992.
Two field trials were carried out in two years in heavy soils of NE Italy, with the aim of studying the effects of water and nitrogen management on fibrous root distribution and dynamics in sugar beet (cv. Dorotea). In conditions of moderate water deficit (year 2002, Conselice, Ravenna, clay soil), two water regimes (irrigation to 100% of potential evapotranspiration, and rainfed) were factorially combined with three rates of nitrogen application (180, 90, 0 kg ha−1). Irrigation increased volumetric root length density (RLDv) without N application and at the medium N rate – a common amount in beet cultivation – but reduced it at the maximum N dose. The medium N rate increased RLDv and shifted root distribution towards shallow layers, regardless of water regime.In the conditions of marked drought of 2003 (Legnaro, Padova, silty-loam soil), at a single rate of N supply (90 kg ha−1) irrigation increased total production (length) of fibrous roots throughout the soil profile (1.8 m), except in the 0.5–1 m interval, and improved the length of standing living roots during the season. Although the maximum root depth at the end of the season was similar in the two water regimes (about 1.9 m), irrigated roots reached the saturated soil layers 10 days earlier than in rainfed plants. The main result was reduced root turnover in deep soil layers (>1 m) and an increase at the surface in the rainfed treatments in conditions of drought, a probable mechanism of adaptation to a more marked gradient of soil moisture compared with irrigation.  相似文献   
993.
The effect of root and shoot pruning on early growth of hybrid poplars   总被引:1,自引:0,他引:1  
Planting stock type and quality can have an important impact on early growth rates of plantations. The goal of this study was to evaluate early growth and root/shoot development of different planting materials in typical heavy clay soils of northwestern Quebec. Using one-year-old bareroot hybrid poplar dormant stock, four planting materials were compared: (1) regular bareroot stock, (2) rootstock (stem pruned before planting), (3) whips (roots pruned before planting), and (4) cuttings (30 cm stem sections taken from the basal portion of bareroot trees, i.e. roots and shoot pruned). Rooted stock types (bareroot and rootstock) produced, on average, 1.2 times larger trees than unrooted stock types (cuttings and whips). However, shoot-pruned stock types (rootstocks and cuttings) reached similar heights and basal diameters as unpruned stock types (bareroots and whips), during the first growing season. Shoot pruning reduced leaf carbon isotopic ratios, suggesting that unpruned stock types were water-stressed during the first growing season. The stress was most likely caused by early leaf development while root growth occurred later in the summer. We conclude that shoot pruning bareroot stock is a useful management option to reduce planting stress without compromising early growth rates of hybrid poplars.  相似文献   
994.
In the province of Québec, Canada, the majority of planted jack pine (Pinus banksiana Lamb.) seedlings are produced in rigid wall containers. More than 95% of them exhibit deformations of the root system which may induce stem instability. Studies of the root architecture of planted jack pine have been limited to a 30 cm radius from the stem, as barely any studies have been devoted to naturally regenerated stands. Moreover, only a few researches have focused on temporal evolution of root systems. The aim of the present study was to characterize the architectural, spatial, and temporal development of jack pine roots in natural and planted stands. Study sites were located in the continuous boreal forest of Quebec. The plantation was done in 1987, so that the trees were 15 years old at the time of sampling. Trees from natural stand had regenerated after a fire in 1983 and were 13–16 years old. The root systems of 14 jack pine trees per site were manually excavated up to a <5 mm diameter, without regard to their distance from the stem. The number, length, diameter, and the spatial and temporal development of roots were analyzed according to three scales of root architecture: the root system, axes, and segments. Overall, the numbers and lengths of roots were higher with planted pines. However, naturally regenerated trees displayed a better distribution of their roots around the stem and at depth, combined with more rapid length growth during the first years. In natural stands, all the trees had a taproot and 30% of the main roots originated at a depth of more than 20 cm, and they are regularly distributed around the stems. Planted trees did not present a taproot and 97% of the main roots originated in the first 20 cm beneath the soil surface. Moreover, 50% of root length was located in one-third of the area surrounding the stems, an area that corresponded to the furrow. Finally, the annual development of lateral roots in planted stand displayed a 5-year delay when compared with natural stand, which also affected maximum growth length and development of the branching pattern. Root distribution and temporal development are known to play a major role in the stability of aerial parts. Seedling production methods, container type, site preparation and planting techniques need to be examined in greater detail in order to assess their effect throughout the development of the root system. It is necessary to compare different sylvicultural practices and with natural/planted stands to gain a clearer understanding of this problem.  相似文献   
995.
In the last decades, reforestation and afforestation programs are being carried out mainly with containerized seedlings. Container design determines the morphological and physiological characteristics of seedlings. However, container characteristics are often the same for plant species with very different growth strategies. The most commonly used nursery containers are relatively shallow and limit tap root growth; consequently, species relying on the early development of a long tap root to escape drought, such as those of the Quercus genus, might need to be cultivated in deep containers. The aim of this paper was to compare the morphological and physiological characteristics of Quercus suber L. seedlings cultivated in shallow containers (CCS-18, depth 18 cm) with seedlings cultivated in deep containers (CCL-30, depth 30 cm). Both container types used were made of high-density polyethylene, cylindrical in shape, open-bottomed, with a diameter of 5 cm, two kinds of vertical ribs on the inside wall showing a cultivation density of 318 seedlings/m2. At the end of nursery culture, the seedlings cultivated in the CCL-30 deep container presented a longer tap root, higher shoot and root biomass and higher Dickson Quality Index (DQI). Moreover, the CCL-30 seedlings showed a higher root growth capacity (RGC), they reached deep substrate layers faster and they presented higher root hydraulic conductance. These morpho-functional advantages improved the CCL-30 seedling water status, which was expressed by higher stomatal conductance during an imposed drought period.  相似文献   
996.
红豆树根瘤的形成时间和根瘤的数量与圃地土壤的质量有关,在土壤水肥条件好的环境中,1 a生苗木中的根瘤少见,且根瘤个体极小;在土壤较贫瘠的圃地中,红豆树根瘤十分发达,数量多且形成时间早。红豆树根瘤能够促进苗木生长,有根瘤生长比无根瘤生长的1年生红豆树植株中,根系的干物质增长率46%、根系鲜重的增长率41.9%、茎干物质增长率40.3%、植株总干物质的增长率35.0%、植株总鲜重增长率22.4%、植株叶的干物质增长率14.8%。截根处理有助于根瘤菌感染苗木植株,苗木生长更健壮:截根处理的苗木径高比为4.1%,未截根处理的为3.4%;截根处理促进根系的发育,截根处理的侧根总长度47cm/株、未截根处理的侧根总长度为26cm/株、侧根增加率为80.8%,截根处理的须根总长度228cm/株、未截根处理的侧根总长度为102cm/株、须根增加比率123.5%;截根处理促进苗木根幅的扩大,比未截根处理的根幅增大27.3%。  相似文献   
997.
American beech (Fagus grandifolia Ehrh.) reproduces sexually, and vegetatively by root suckers. Although many studies have investigated its regeneration response, most did not account for differences that may exist between its two modes of reproduction. This study was performed in an old-growth Acer - Fagus forest in southern Quebec, where beech bark disease had only a minor effect at the time of the study. We compared the density and frequency of occurrence of beech seedlings and root suckers (height < 30 cm), as well as their morphology, growth, survival, and response to experimental defoliation. Root suckers accounted for 13% of beech regeneration at our site. Density and frequency of occurrence were greater for seedlings than suckers, but did not vary with light availability, which was low at our study site (mean: 2.9%). Seedlings and suckers did not differ in leaf characteristics, but several differences were observed in terms of plant morphology, growth, and survival. Root suckers showed more lateral growth than height growth, and had a lower leaf area index than seedlings. Root suckers had both a greater growth in height and diameter, and a higher survivorship than seedlings (height and diameter growth were, respectively, five and two times greater for suckers than seedlings, and 74% of suckers survived more than 1 year, compared to 52% for seedlings). Defoliation treatments, which included levels of defoliation of 50% and 100% (1) did not affect current-year extension growth of seedlings and suckers; (2) did not affect seedling diameter growth, but had a negative impact on sucker diameter growth; and (3) affected survivorship for both origins, but had a much greater negative impact on seedling survivorship (none of the completely defoliated seedlings survived over one year, while 55% of the suckers did). This study showed that several differences exist between small beech seedlings and root suckers in traits that are important determinants of a species’ competitive ability. We therefore expect that variation in the relative importance of root suckering among sites might have several community-level implications.  相似文献   
998.
Pine plantations in the southeastern United States are often created using site preparation treatments to alleviate site conditions that may limit survival or growth of planted seedlings. However, little is understood about how site preparations affect longleaf pine (Pinus palustris P. Miller) seedlings planted on wet sites. In a 2-year study (2004 and 2005) on poorly drained, sandy soils of Onslow County, North Carolina, we examined the effects of common site preparation treatments on microsite conditions and quantified relationships between microsite conditions and longleaf pine seedling survival and growth. Treatments used in the study included site preparations designed to control competing vegetation (chopping and herbicide) combined with those that alter soil conditions (mounding and bedding). During both years, mounding and bedding treatments reduced the amount of moisture within the top 6 cm of soil and increased soil temperatures when compared to flat planting (p < 0.001). Soil moisture was inversely related to seedling mortality in 2004 (r2 = 0.405) and inversely related to root collar diameter in 2005 (r2 = 0.334), while light was positively related to root collar diameter in 2005 (r2 = 0.262). Light availability at the seedling level was highest on treatments that effectively reduced surrounding vegetation. Herbicides were more effective than chopping at controlling vegetation in 2004 (p < 0.001) and 2005 (p = 0.036). Controlling competing vegetation, especially shrubs, was critical for increasing early longleaf pine seedling growth.  相似文献   
999.
The decomposition of Pinus radiata (D. Don) stems, coarse woody roots and stumps was studied in Tarawera forest, Bay of Plenty region, North Island, New Zealand. The study examined the residues from two thinning events with 6 and 11 years of decay. Changes in the mass of stems, and density of roots and stumps were used to estimate the decay rate constants using a single exponential model. The decay rate of stems was not significantly related to DBH and averaged 0.1374 year−1 (22 years for 95% mass loss). The decay rate of coarse woody roots was not significantly different to stem decay and averaged 0.1571 year−1 (19 years for 95% mass loss). A large range in stump decay rates was measured and a significantly lower decay constant was observed for stumps (0.1101 year−1, 27 years for 95% mass loss), possibly due to the stumps being kept alive after felling through root grafting and a resistance to decay due to the presence of resin. The concentration of C remaining in stems and stumps increased with mass loss from 52% to 55% C after 11 years of decay. The C concentration in coarse woody roots initially increased but then declined near to the original level of 50% after 11 years of decay. Nitrogen concentrations increased substantially in all components with decay.  相似文献   
1000.
The fine root (diameter ≤2.0 mm) biomass and morphology of Japanese red pines (Pinus densiflora) grown under different aboveground conditions (i.e., high and low competitive environments) were examined in a pine–cypress mixed forest. All P. densiflora subject trees were about 40 years old, and the aboveground condition (i.e., size) of red pines appeared to be influenced by the surrounding Japanese cypress (Chamaecyparis obtusa). Smaller P. densiflora exhibited lower fine root biomasses, shorter root lengths, and lower root tip densities, but longer specific root lengths and higher specific root tip densities relative to larger pines. These results suggest that P. densiflora may adjust the morphological traits of fine roots to the different conditions in biomass allocation to fine roots of individuals with different aboveground growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号