首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3060篇
  免费   164篇
  国内免费   1281篇
林业   92篇
农学   101篇
基础科学   49篇
  3355篇
综合类   671篇
农作物   87篇
水产渔业   5篇
畜牧兽医   41篇
园艺   49篇
植物保护   55篇
  2024年   25篇
  2023年   101篇
  2022年   103篇
  2021年   111篇
  2020年   127篇
  2019年   170篇
  2018年   155篇
  2017年   188篇
  2016年   211篇
  2015年   203篇
  2014年   181篇
  2013年   308篇
  2012年   424篇
  2011年   193篇
  2010年   208篇
  2009年   193篇
  2008年   136篇
  2007年   169篇
  2006年   174篇
  2005年   136篇
  2004年   111篇
  2003年   98篇
  2002年   77篇
  2001年   78篇
  2000年   77篇
  1999年   76篇
  1998年   72篇
  1997年   68篇
  1996年   58篇
  1995年   52篇
  1994年   46篇
  1993年   41篇
  1992年   30篇
  1991年   18篇
  1990年   23篇
  1989年   21篇
  1988年   13篇
  1987年   20篇
  1986年   8篇
  1985年   1篇
  1981年   1篇
排序方式: 共有4505条查询结果,搜索用时 265 毫秒
201.
Abstract

A study to investigate the effect of lime on dry matter yield of maize (Zea mays) and beans (Phaseolus vulgaris) and nodulation of beans grown in three tropical acid soils (two humic Nitosols and one humic Andosol) was carried out in a greenhouse. The soils ranged from 4.2 to 5.0 in pH; 1.74 to 4.56 in %C; 21.0 to 32.0 meq/100g in CEC; 5.10 to 8.10 meq/100g in exchange acidity; 0.60 to 3.20 meq/100g in exchangeable (exch.) Al and 0.13 to 0.67 meq/ 100g in exch. Mn.

Exchange acidity and exch. Al decreased with increasing levels of lime in the three soils. Exchangeable Al was reduced to virtually zero at pH 5.5 even in the soils which had appreciable initial amounts. Exchangeable Mn also decreased with increasing levels of lime in the two Nitolsos. Exceptional results, however, were obtained with the Andosol where exch. Mn increased ten‐fold with the first level of lime and then decreased with subsequent levels.

In all the soils, mean dry matter yield of beans and maize, and mean nodule dry weight of beans generally increased significantly with increasing lime levels up to pH value of 6.0. The dry matter yield of beans and maize, and nodule weight of beans, however, decreased progressively with increasing lime levels beyond pH 6.0 value. pH range of 5.5 to 6.0 was considered optimum for the growth of maize and beans, and nodulation of beans in these soils.  相似文献   
202.
Abstract

The influence of reaction time and ionic environments, on phosphate adsorption were studied using one calcareous soil from India, and one calcareous and two latosols from Hawaii.

Phosphorus adsorption by soils has a initial rapid phase followed by a slow process. For plant nutrition studies, where emphasis is on P concentration of solutions from which plants derive P, isotherms should be constructed using data obtained after near‐equilibration has been attained. This condition does not obtain in a few hours and may require 6 days or more.

Calcium chloride as suspending electrolyte always gave lower phosphate solubility than when KC1 was used as electrolyte. Phosphate retention increased with increasing ionic strength. The necessity for obtaining clear supernatant solutions and the desirability for maintaining reasonable constant equilibrium conditions make 0.01 M CaCl2 a reasonable choice for constructing P sorption isotherms, even though 0.01 M CaCl2 is not representative of Ca concentrations in many soil solutions. Saturation extracts of soils investigated here were in the range 0.0002 to 0.005 M Ca.

Adsorption of calcium by highly weathered soils was high suggesting specific adsorption. Calcium adsorption was increased by phosphate additions to a Hydrandept.  相似文献   
203.
Abstract

Results of a field experiment, comprising elemental S and three commercial preparations of Fe, applied with and without several other factors showed that the application of S was significantly better than that of Fe supplying materials in preventing the incipient chlorosis of corn leaves on the alkaline calcareous soils. Prevention of chlorosis in corn due to sulphur application increased the grain yield of corn 25–31%.

Leaf samples from plants raised with Fe supplying materials were chlorotic even though they contained significantly higher amounts of Fe. Persistence of chlorosis in spite of high Fe content of leaves, vis a vis freedom from chlorosis in spite of low Fe content, suggest that deficiency of Fe was not a factor in chlorosis. Freedom from chlorosis accompanied by significant increases in corn yields due to S application, on the contrary, show that it was the lack of S rather than Fe as the cause of Chlorosis.

When the supply of S is low, Fe seems to be subjected to a great deal of chemical inactivation and under conditions of stress more and more absorption of Fe is necessitated. In all probability the rate of inactivation exceeds the rate of absorption and chlorosis develops. In this situation either the plant's ability to utilize iron is affected or the physiological availability of absorbed iron is very low. Increased S seems to arrest the process of Fe inactivation by providing a better nutritional environment.  相似文献   
204.
Water deficit is a serious problem for most agricultural crops, especially in arid–semiarid regions, and limits sustainable development. Production can be improved by reducing evapotranspiration and loss of infiltrated water by the use of a plastic cover. We monitored soil moisture fortnightly over 1 yr using a neutron probe near four trees in an olive grove (Olea europaea, var. Arbequina), two of which had a plastic cover buried in the topsoil around them. These trees were monitored using three neutron probe access tubes per tree to compare the behaviour of soil moisture over time with two other identically instrumented and nearby trees with no cover. Analysis was based on the resultant moisture profiles. The plastic cover retained moisture and increased soil water residence time. During the dry season, the amount of water retained in the plots was at most 15–20% greater in the mid‐season and at least 5–6% greater at the end of season than in the central part of the plots near the trunk. The plastic cover was effective to ca. 50 cm with maximum water content near the soil surface. During the wet season, the cover did not affect soil water. Soil moisture was greater near the tree trunk as a result of stemflow and throughfall.  相似文献   
205.
Soil pollution by elevated heavy metals exhibits adverse effects on soil microorganisms. Ammonia oxidizing bacteria and ammonia oxidizing archaea perform ammonia oxidative processes in acidic soils. However, influence of heavy metal stress on soil ammonia oxidizers distribution and diversity is inadequately addressed. This study investigated the responses of ammonia oxidizing bacteria and archaea to heavy metals, Cu and As during short-term laboratory experiment. Two different acidic alfisols named as Rayka and Hangzhou spiked with different concentrations of As, Cu and As + Cu were incubated for 10 weeks. Significant reduction in copy numbers of archaeal-16S rRNA, bacterial-16S rRNA and functional amoA genes was observed along elevated heavy metal concentrations. Ammonia oxidizing archaea was found to be more abundant than ammonia oxidizing bacteria in all the heavy metal treatments. The potential nitrification rate significantly decreased with increasing As and Cu concentrations in the two soils examined. Denaturing gradient gel electrophoresis analysis revealed no apparent community shift for ammonia oxidizing archaea even at higher concentrations of As and Cu. Phylogenetic analysis of archaeal amoA gene from 4 clone libraries indicated that all the archaeal amoA sequences were placed within 3 distinct clusters from soil and sediment group 1.1b of Thaumarchaeota. Our results could be useful for the better understanding of the ecological effects of heavy metals on the abundance and diversity of soil ammonia oxidizers.  相似文献   
206.
Strongly acidic soil (e.g. pH < 5.0) is detrimental to tea productivity and quality. Wheat, rice and peanut biochar produced at low temperature (max 300 °C) and differing in alkalinity content were incorporated into Xuan‐cheng (Ultisol; initial pHsoil/water = 1/2.5 4.12) and Ying‐tan soil (Ultisol; initial pH soil/water = 1/2.5 4.75) at 10 and 20 g/kg (w/w) to quantify their liming effect and evaluate their effectiveness for acidity amelioration of tea garden soils. After a 65‐day incubation at 25 °C, biochar application significantly (< 0.05) increased soil pH and exchangeable cations and reduced Al saturation of both tea soils. Association of H+ ions with biochar and decarboxylation processes was likely to be the main factor neutralizing soil acidity. Further, biochar application reduced acidity production from the N cycle. Significant (< 0.05) increases in exchangeable cations and reductions in exchangeable acidity and Al saturation were observed as the rate of biochar increased, but there were no further effects on soil pH. The lack of change in soil pH at the higher biochar rate may be due to the displacement of exchangeable acidity and the high buffering capacity of biochar, thereby retarding a further liming effect. Hence, a significant linear correlation between reduced exchangeable acidity and alkalinity balance was found in biochar‐amended soils (< 0.05). Low‐temperature biochar of crop residues is suggested as a potential amendment to ameliorate acidic tea garden soils.  相似文献   
207.
Abstract

Extractable li with ammonium acetate was determined by flamephotometry, in normal soils, alkaline soils and saline soils in the Province of La Pampa (Argentina).

The soils were originated from differents parent material, with various rainfalls (arid to subhumid climate) and management.

The higher contents were found in saline soils. In the other soils the extractable lithium content depends on the parent material, but not on rainfall.

Different patterns of vertical and horizontal distribution of extractable lithium were found.

The origin of extractable lithium is here discussed.  相似文献   
208.
Abstract

Soil pH's were evaluated at three time intervals following land clearing at two locations in the Matanuska Valley. Seasonal fluctuations of pH values over a seven‐year period as determined in water (pHw,) and 0.01 M CaCl2 (pHs) were additionally evaluated at these locations. A statistical rise in soil pH occurred at both locations with clearing and subsequent cultivation. Soil reaction differences related to season and year were not consistent and were not related to a definite pattern. No relationship between monthly or seasonal precipitation and the soil reaction was found. The correlation coefficient between pHw and pHs was highly significant. Work of other investigators is discussed in the interpretation of the data collected.  相似文献   
209.
Abstract

Magnesium (Mg) is an essential macronutrient element for all living organisms, but literature reports of Mg deficiency in agriculture and forestry appear regularly. In many tropical areas, Mg is added to soils by using dolomitic limestone and as minor additions through impurities in some fertilizers. Minimal information is available on the Mg status of Fiji soils, and deficiencies have been observed in some crops. This study investigated the Mg status of a range of Fiji soils and found that major agricultural soils of Fiji contain variable amounts of Mg, both in the total concentrations and in the different forms of the element present. The variations can be related to the soil parent materials, degree of weathering, clay content, and mineralogy. Low plant‐available Mg concentrations are present in many of the highly weathered soils with limited reserves present. Development of intensive agriculture should consider Mg when developing fertilizer programs.  相似文献   
210.
Abstract

Negative yield responses are common when highly leached soils are limed to neutrality. A number of explanations have been proposed, but very few have been experimentally verified or are entirely acceptable. In this paper the problem is re‐examined and a new possible causal mechanism is proposed.

Data assembled from the literature are used to demonstrate that a consistently observed reduction in Mg uptake by plants when soils are limed to neutrality is often accompanied by a generally ignored reduction in exchangeable soil Mg. Using data for soils of North American and African origin, it is demonstrated that when the soils were limed with pure Ca sources, the level of exchangeable soil Mg was reduced between 36 and 93%. Furthermore, after treatment with a Mg containing liming material, initial increases in the level of exchangeable Mg were followed by similarly large decreases when the soil pH approaches neutrality.

The applicability of known Mg fixation mechanisms is briefly discussed and the suggestion is made that Mg fixation may offer an acceptable explanation for some of the yield depressions observed on liming to neutrality. Research is currently in progress to gather sufficient data to answer the many questions raised.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号