首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5811篇
  免费   226篇
  国内免费   959篇
林业   248篇
农学   793篇
基础科学   121篇
  2341篇
综合类   1768篇
农作物   988篇
水产渔业   116篇
畜牧兽医   358篇
园艺   212篇
植物保护   51篇
  2024年   47篇
  2023年   128篇
  2022年   158篇
  2021年   183篇
  2020年   159篇
  2019年   171篇
  2018年   135篇
  2017年   210篇
  2016年   294篇
  2015年   255篇
  2014年   290篇
  2013年   461篇
  2012年   445篇
  2011年   435篇
  2010年   353篇
  2009年   416篇
  2008年   416篇
  2007年   444篇
  2006年   367篇
  2005年   262篇
  2004年   224篇
  2003年   155篇
  2002年   100篇
  2001年   76篇
  2000年   107篇
  1999年   95篇
  1998年   93篇
  1997年   74篇
  1996年   83篇
  1995年   52篇
  1994年   44篇
  1993年   46篇
  1992年   46篇
  1991年   41篇
  1990年   26篇
  1989年   31篇
  1988年   27篇
  1987年   28篇
  1986年   9篇
  1985年   3篇
  1980年   1篇
  1979年   1篇
  1963年   5篇
排序方式: 共有6996条查询结果,搜索用时 234 毫秒
991.
水稻无氮基础地力产量测定试验总结   总被引:1,自引:0,他引:1  
通过对赣榆县赣马镇马厂村进行了水稻无氮基础地力产量的测定试验。结果表明:氮肥当季利用率较低,应精确定量施肥,减少氮肥流失,提高种稻经济效益。  相似文献   
992.
超高产栽培氮肥运筹对春玉米穗部性状及产量的影响   总被引:2,自引:1,他引:1  
以金山27为试验材料,连续2年研究了超高产栽培氮肥运筹对春玉米穗部性状及产量的影响。结果表明,各处理春玉米的穗长、穗粗、粒长、穗粒数、千粒重均以Opt-N(优化施氮,种肥、拔节肥、大口肥的比例为1∶3∶6)最大,秃尖长度以0-N最长,Opt-N最短;产量以Opt-N最高,130%Opt-N次之,0-N最低;经济系数以Opt-N最大,0-N最小。  相似文献   
993.
Our goal was to quantify and compare the impact of three silvicultural treatments (STs) on growth, light-energy processing, and needle-level morphological adaptive traits for eastern white pine (Pinus strobus L.) from large, central Ontario (ON) and small, isolated Newfoundland (NL) populations. The interest in STs is to reduce weevil (Pissodes strobi) incidence; however, there are potential adaptive changes and productivity trade-offs. The light levels for the STs were, on average, 100%, 42.0%, and 20.4% transmittance for the full-sun, and intermediate- and high-shade STs, respectively. After 8 years, overall height growth was 4.10, 3.25, and 1.70 m for full-sun, and intermediate- and high-shade STs, respectively (P < 0.001). Across all STs, ON populations had greater total height (14%), basal diameter (12%), current leader length (25%), and tree volume (49%) than NL populations (all P < 0.001). At low light levels (10 and 25 μmol m−2 s−1), high-shade ST trees had higher photochemical quenching (qP) and lower chlorophyll fluorescence (Fpc) compared with intermediate-shade and full-sun STs. At 100 μmol m−2 s−1 and beyond, full-sun ST trees had higher qP and lower Fpc than intermediate- and high-shade STs. Average total chlorophyll concentration (CHL) and content (CHLC), and carotenoid concentration (CAR), increased in response to the intermediate-shade ST but did not respond further, or decreased in the high-shade ST. Region was significant for CHL, CAR, chlorophyll a:b and CHL:CAR ratios and CHLC, with ON greater than NL, but was reversed for CHL:CAR ratio. Tree height and volume showed a curvilinear and linear relationship to light level, respectively. Tree height showed a positive linear relationship to qP, apparent photosynthesis, chlorophyll a:b ratio, and needle N (all P < 0.001). Tree height showed a negative linear relationship to Fpc, CHL:CAR ratio, specific needle area, C:N ratio, and needle area N−1 (all P < 0.001). There were modest trade-offs between weevil protection and productivity in the intermediate ST due to the compensatory physiological and morphological adaptations to the limiting light, however, the trade-off with growth at the high-shade level was severe. For NL, consideration should now be given to the introduction and mixing of seed from local seed sources with more southern mainland seed sources, which would decrease the inbreeding effect and provide wider variation for natural selection for a more fit future population.  相似文献   
994.
Lowland evergreen rainforests in southern Chile growing on highly productive soils and accessible sites have been subjected to traditional and industrial logging of valuable timber trees. Old-growth rain forests in this area are characterized by highly conservative N cycles, which results in an efficient N use of ecosystems. We hypothesize that different logging practices, by changing forest structure and species composition, can alter the quantity and quality (i.e. C/N ratio) of litterfall and soil organic matter and soil microbial processes that determine N storage and availability. To test this hypothesis we investigated chemical properties, microbial N transformations, N fluxes and N storage in soils of lowland evergreen rainforests of Chiloé Island after 10 years since industrial selective logging (ISL) and in stands subjected to traditional selective logging (TSL) by landowners in small properties. We compared them to reference unlogged old-growth stands (OG) in the same area. Tree basal area was more reduced in the stands subjected to ISL than to TSL. Litterfall inputs were similar in both logging treatments as in OG stands. This was due to greater biomass of understory species after logging. In TSL understory tree species determined a higher litterfall C/N ratio than ISL. We found higher soil N availability and content of base cations in surface soils of logged forests than in OG. The litter horizon of OG forest had significantly higher rates of non-symbiotic N fixation than logged forests. In the ISL treatment there was a trend toward increasing soil denitrification and significantly higher NO3–N/Nt ratio in spring waters, which led to a stronger δ15N signal in surface and deep soils. We conclude that massive understory occupation by the shade-intolerant native bamboo Chusquea quila in ISL led to enhanced litter quality (lower C/N ratios) relaxing the tightness of the N cycle, which increased soil N availability leading to a higher proportion of nitrate in spring waters and higher gaseous N losses. In contrast, under TSL a higher litterfall C/N ratio slowed decomposition and net N mineralization rates thus reducing the chances for N losses, and enhancing C and N storage in soil. We suggest that sustainable logging practices in these rain forests should be based on lower rates of canopy removal to enhance colonization of the understory by shade-tolerant trees, which are associated with a more efficient N cycle.  相似文献   
995.
During the last 15 years a number of studies have shown increasing forest growth in central Europe, rather than a decline as was expected due to negative effects of air pollution. We have here used data from intensive monitoring plots spread over Europe for a five year period in order to examine the influence of environmental factors on forest growth. Evaluations focussed on the influence of nitrogen, sulphur and acid deposition, temperatures, precipitation and on a drought index calculated as deviation from the long-term mean. The study included the main tree species Norway spruce, Scots pine, common beech as well as European and sessile oak and was based on data from 363 plots. As many other factors besides nitrogen and temperature influence tree growth, expected stem volume increments were modelled using site productivity, stand age and a stand density index. Relative volume increment was then calculated as actual increment in % of expected increment. The site productivity, assumed to be given by site conditions and past environmental conditions, was either taken from expert estimates or computed from site index curves from northern, central and southern Europe. The model explained between 18% and 39% of the variance with site productivity being positively related and age negatively related to actual increment. The various models and statistical approaches were fairly consistent, and indicated a fertilizing effect of nitrogen deposition, with slightly above one percent increase in volume increment per kg of nitrogen deposition per ha and year. This was most clear for spruce and pine, and most pronounced for plots having soil C/N ratios above 25. Also, we found a positive relationship between relative increment and summer temperature, i.e. May–August mean temperature deviation from the 1961–1990 means. The cause–effect relationship here is, however, less certain. Other influences were uncertain. Possibly, sulphur and acid deposition have effects on growth, but these effects are obscured by, and outweighed by the positive effect of nitrogen deposition, because of collinearity between these variables. Drought effects were uncertain also, and one reason for this might be large uncertainties in the precipitation data: precipitation measured on some 50% of the plots correlated poorly with the precipitation data obtained from Europe-wide databases. The major finding of this study was a positive relationship between higher than normal volume increment on one hand and nitrogen deposition on the other hand.  相似文献   
996.
This article quantifies pre- to post-harvest gaseous N emissions and other N losses from forest soils and basins geospatially and temporally via digital elevation and hydrological modeling, using daily rain, snow and air temperature records, annual atmospheric N deposition rates, and basin-specific soil and forest specifications as input. The approach relates gaseous N losses from soils to soil temperature and water-filled pore space (WFPS) as affected by the depth-to-water (DTW) below the soil surface. The approach is applied to the Turkey Lakes Watershed Project (TLW) in Ontario, 60 km north of Sault St. Marie, where basin-wide N losses due to denitrification would mostly be restricted to the wetland portions of the basin. Basin-wide N losses via denitrification and stream export (mineral N and dissolved organic N) were empirically related to upland N mineralization and soil leaching as controlling processes. The calibrated model calculations, set to conform to the field-monitored N concentrations in TLW streams, suggest that the harvest-induced nitrification and denitrification pulses would be strongest near the end of the first post-harvest year, dropping to background levels within about 4–5 years later. The article concludes with assessing basin-specific denitrification efficiencies in relation to atmospheric N deposition and basin-to-basin wetland coverage.  相似文献   
997.
To test effects of litter quality and soil conditions on N-dynamics, we selected seven forests in Luxembourg dominated by beech (Fagus sylvatica, L.) and hornbeam (Carpinus betulus L.), and located on acid loam, decalcified marl or limestone, and measured organic matter characteristics, microbial C and N and net N-mineralization in a laboratory incubation experiment. Organic layer characteristics were significantly affected by species, with lower litter decay and higher accumulation under the less palatable beech, even on limestone. However, beech and hornbeam did not show any differences in N-cycling at all. Instead of species, N-cycling was affected by site conditions, albeit different than expected. Microbial N generally increased from acid loam to limestone, but acid loam showed higher net N-mineralization, especially in the organic layer. Also, acid loam showed high instead of low efficiency of N-mineralization per unit microbe, in both organic layer and mineral topsoil. In addition, acid loam showed net consumption of DOC instead of release in both soil layers, which suggests that not N, but C was a limiting factor to decomposition. In contrast, limestone showed low net N-mineralization in the organic layer, despite high mass and well-decomposed organic matter, and low efficiency of N-mineralization per unit microbe in both organic layer and mineral topsoil. DOC was net released instead of consumed, which supported that not C, but N was a limiting factor. The general lack of differences in net N-cycling between species, but relatively clear site effects, is discussed in relation to different microbial strategies. Acid soil may have high net N-release despite low biological activity, because N-requirements of fungi are also low, while in calcareous soil, high bacterial N-demand may counteract high gross N-release. Thus, species producing litter that decomposes rapidly may be planted to improve soil conditions and plant biodiversity, but litter quality effects on N-availability may be less important than soil conditions.  相似文献   
998.
More than 2.5 million ha of Eucalyptus globulus are now planted across the globe including approximately 500 000 ha in southern Australia. In this region average annual rainfall has declined since 1960 and this trend is predicted to continue in the coming decades. E. globulus is a premium species for paper manufacture and grows well under moderate seasonal water stress. The traits that underpin this rapid early growth also make the species vulnerable to prolonged water stress. We established nitrogen rate and nitrogen-by-stocking experiments in five 2-year-old E. globulus plantations along a climatic gradient in south-western Australia. We measured volume growth, predawn leaf water potential and leaf area index over 7 years or until the plantations were 9 years old. These data were used to explore the relationship between growth and water stress, to understand the mechanistic basis for the relationship and to identify best-bet management strategies for E. globulus plantations in southern Australia.  相似文献   
999.
城乡梯度森林土壤原易位N矿化   总被引:3,自引:0,他引:3       下载免费PDF全文
以位于南昌市城乡生态界面的湿地松(Pinus elliottii)人工林为研究对象,开展城区、郊区、乡村3个不同梯度土壤N原位、易位培养试验.结果表明:培养土壤来源对土壤的氨化、硝化速率影响差异极显著(P<0.001),对净矿化速率影响差异显著(P<0.05);氨化速率表现为乡村土壤来源(0.11 mg·kg-1·30 d-1)>郊区土壤来源(-0.92mg·kg-1·30d-1)>城区土壤来源(-2.02 mg·kg-1·30 d-1);硝化速率表现为乡村土壤来源(0.44 mg·kg-1·30 d-1)较低,城区(3.18 mg·kg-1·30 d-1)和郊区土壤来源(3.35 mg·kg-1·30 d-1)较高;净矿化速率表现为乡村土壤来源(0.54 mg·kg-1·30 d-1)<城区土壤来源(1.16 mg·kg-1·30 d-1)<郊区土壤来源(2.43 mg·kg-1·30 d-1).培养位置对氨化速率影响差异不显著(P>0.05),对硝化速率、净矿化速率影响差异极显著(P<0.001);硝化速率和净矿化速率均表现为乡村(0.68 mg·kg-1·30 d-1和-0.29 kg·kg-1·30 d-1)和郊区(1.78 mg·kg-1·30 d-1和1.06 mg·kg-1-30 d-1)较低,城区(4.51 mg·kg-1·30 d-1和3.36mg·kg-1·30 d-1)较高.总体来看,土壤N的矿化过程既与土壤理化特性有关,又明显受到城市化的影响.  相似文献   
1000.
摘 要:通过辣椒/玉米间作田间试验,研究辣椒/玉米间作条件下,作物对氮、磷和钾的吸收利用特征。结果表明:(1)间作辣椒第1行土壤碱解N和速效P低于单作,间作辣椒中间行碱解N、速效P和速效K含量与单作接近;(2)间作辣椒第1行叶片含N、P量低于单作辣椒,间作3、5行辣椒叶片含N、P量显著高于辣椒单作,从第1行到第5行逐渐增加。间作辣椒叶片含K量在前期低于单作辣椒,后期则高于辣椒单作;(3)间作玉米含N量高于单作玉米。前期间作玉米叶片P、K含量与单作玉米前期接近,后期低于单作;(4)辣椒/玉米间作条件下,辣椒和玉米的产量显著高于单作时的产量。关键词:辣椒;玉米;间作;氮;磷;钾  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号