首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   7篇
  国内免费   2篇
林业   19篇
农学   5篇
  108篇
综合类   30篇
农作物   3篇
畜牧兽医   3篇
园艺   14篇
植物保护   13篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   6篇
  2013年   17篇
  2012年   15篇
  2011年   17篇
  2010年   6篇
  2009年   4篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   6篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   8篇
  1996年   10篇
  1995年   1篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
排序方式: 共有195条查询结果,搜索用时 10 毫秒
31.
Summary Spores of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus clarum obtained from sweet potatoes grown in soil inoculated with this fungus and with an enrichment culture of Acetobacter diazotrophicus contained A. diazotrophicus and several other bacteria, including a diazotrophic Klebsiella sp. Inoculation of micropropagated sweet potatoes with G. clarum and A. diazotrophicus enhanced spore formation in soil compared to VAM inoculation alone. Plants inoculated with VAM spores containing the bacteria showed additional increases in the number of spores formed within roots. A. diazotrophicus infected aerial plant parts only when inoculated together with VAM or when present within VAM spores. Micropropagated sugarcane seedlings inoculated with the same VAM spores containing the diazotrophs also contained much higher numbers of A. diazotrophicus in aerial parts than seedlings inoculated in vitro with the bacteria alone. When grown in non-sterile soil, the sugarcane seedlings again showed the greatest infection of aerial parts after inoculation with VAM spores containing the diazotrophs. This treatment also increased VAM colonization and the numbers of spores formed within roots. Similar effects were observed in sweet sorghum except that the aerial plant parts were not infected by A. diazotrophicus.  相似文献   
32.
Summary We examined the influence of a vesicular-arbuscular (VAM) fungus (Glomus pallidum Hall) on the competitive ability of introduced and native Bradyrhizobium strains to nodulate cowpeas [Vigna unguiculata (L) Walp]. Our experiments in non-sterilized soil revealed that in the presence of VAM fungus, introduced Bradyrhizobium spp. strains become more competitive than native rhizobia. For example, strain JRC29 occupied 59.2% of the total nodules when inoculated alone, but this figure increased to 71.2% when JRC29 was used in dual inoculations with VAM fungus. A similar pattern of enhanced competitiveness for nodule formation was observed with the two other strains in the presence of the VAM fungus. Our results suggest that the competitiveness of rhizobia can be enhanced by co-inoculating with a selected strain of a VAM fungus.  相似文献   
33.
The present study assessed the effect of arbuscular mycorrhizal fungi (AMF) on broomrape (Orobanche aegyptiaca Pers.) control to determine its effects on tomato (Lycopersicon esculentum L.) growth indices. This experiment was carried out using a randomized complete block design with four replications. The treatments included three strains of AMF (Glomus mosseae, Glomus intraradices and Glomuse hoe ) at three levels (100, 200 and 300 kg ha?1). The control treatments (without mycorrhiza) were with and without broomrape (weed infest and weed free). The results showed that the use of G. intraradices and G. mosseae decreased broomrape seed germination, the number of nodules and the dry weight of the broomrape and increased root area and dry weight of the tomato plant when compared to G. hoe and the control treatments without broomrape. The tomato yield in G. intraradices 300 kg ha?1 treatment increased by 10 and 205% than weed free and weed infest treatments, respectively. Finally, G. intraradices and G. mosseae at, respectively, 200 and 300 kg ha?1 are recommended for land under tomato cultivation that has been contaminated with broomrape.  相似文献   
34.
ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are found in the soil of most ecosystems where they form mutualistic associations that affect plants growth. We have investigated the community structure of AMF associated to Retama raetam growing in five regions of Tunisia. The total number of spores was significantly different across sites, ranging from 633 to 1062 spores per 100 g dry soil. A dominance of small spores was revealed. The large subunit region of the rDNA of AMF spores associated to the rhizosphere of R. raetam was sequenced. Sequences clustered into 13 operational taxonomic units. Phylogenetic analysis revealed that the majority of sequences were grouped within Glomeraceae and Claroideoglomeraceae families. Only two sequences were affiliated to the Scutellospora genus. These results suggest the dominance of the genus Glomus in the soil rhizosphere of R. raetam. A correlation between phylogenetic analysis, soil chemicals properties, and AMF community richness was also detected.  相似文献   
35.
以高粱为宿主,采用盆栽试验,研究生化因子对丛枝菌根真菌Glomus intraradices产孢和侵染的影响。结果表明:单一有机氮源和活性物质能显著提高G. intraradices产孢和侵染,酒石酸铵(0.5%)、甘氨酸(1%)和根浸出液(2 mL),可分别使每160 g沙样孢子产量提高至382,302和328个,对照仅为155个;甘氨酸(0.5%,1.0%)、酒石酸铵(0.5%)、腐殖酸铵(0.5%,1.0%,2.0%)和根浸出液(2,3,5 mL)处理,可使根侵染率分别提高至53.7%,52.8%,43.9%,59.4%,48.9%,57.7%,64.9%,55.9%,52.9%(对照仅为27.3%);单一碳源(葡萄糖、蔗糖)则对G. intraradices产孢和侵染率都没有显著影响;不同的氮源+碳源(NH4Cl+葡萄糖)组合对G. intraradices产孢和侵染率有不同影响,当C、N比值为4∶1,1∶2时,显著提高G. intraradices产孢,可分别使每20 g沙样产孢量可分别达到2227,2458个(对照仅为157个)。当C、N比值为1∶2时,侵染率为2.4%,显著低于对照19.3%;比值为4∶1时,对侵染率没有显著影响。生化因子对G.intraradices产孢和侵染的作用特点不同。  相似文献   
36.
磷与VA菌根真菌对小金海棠苹果苗生长及营养的影响   总被引:13,自引:0,他引:13  
 采用隔网分室盆栽装置, 研究了P 不同水平下, 接种VA 菌根真菌〔Glomus versiforme (Karsten) Berch. 〕对小金海棠(Malus xiaojinensis Cheng et Jiang) 实生苗生长及P、Fe、Zn、Cu 营养状况的影响。结果表明, 菌根真菌的侵染能显著增加小金海棠实生苗的生长量,改善宿主植物的P 营养。虽然小金海棠菌根苗地上部及根部Fe 含量因边室施加P 肥明显降低, 但其Fe 的吸收量明显增加, 且在施P 50 mg·kg-1的水平(P1) 下达最大值。菌根真菌的侵染增加了小金海棠苗对Zn 和Cu 元素的吸收。  相似文献   
37.
Siratro (Macroptilium atropurpureum (DC) Urb.) is a vigorous perennial forage legume with good potential for improving pastures in the extensive neotropical regions of the world. It is well adapted to a wide range of soil and climatic conditions. The objective of these studies was to determine effects of Glomus fasciculatum colonization, rigorous defoliation, and soil fertility treatments to a Psammentic Paleustalf (Eufaula) soil on growth, regrowth, nodulation, and nitrogenase activity (C2H2 red.) of Siratro inoculated with Rhizobium leguminosarum Frank. Top growth increased significantly with soil K and P amendment and with mycorrhiza colonization. Nodulation and nitrogenase activity were correlated with highly significant increases from G. fasciculatum, P treatments and K additions to 300 mg K kg‐1 soil. Growth and peduncles of nonclipped plants increased about 4 fold from 90 to 225 day age with mature seed yield increasing about 10 fold; nodule mass and nitrogenase activity levels approximately doubled. Regrowth response of plants defoliated at 45 day intervals, following their initial 90 day age, was somewhat constant between clippings for magnitude of regrowth 12.3–13.8g, development in number of peduncles 4.0–6.8, seed yield 1.4–2.6g, nodulation 2.9–3.7g, and nitrogenase activity 73.9–95.8μ mol C2H4g‐1 nodule. Multiple regression for nitrogenase = 0.55 g top wt. + 0.63 g nodule wt. + 1.91 day age ‐ 0.07 peduncle no., R2 = 0.85 and C.V. = 14.3%. Favorable tripartite symbiosis with both effective Rhizobium and endophyte mycorrhiza were essential for high levels of symbiotic nitrogen fixation.  相似文献   
38.
黄芪幼苗丛枝菌根形成过程研究   总被引:1,自引:0,他引:1  
盆栽灭菌条件下,研究了黄芪Astragalus membranaceus与摩西球囊霉Glomus mosseae形成丛枝菌根的过程及细胞结构变化情况。结果发现,黄芪接种34 d时,真菌菌丝开始侵染根表皮;44 d时菌丝在皮层细胞内逐渐增多,并且细胞间有极少量泡囊产生,形状为椭圆形;54 d时细胞内大量菌丝扩展;63 d时有大量真菌孢子萌发;84 d时细胞间有大量泡囊形成,呈圆形、近圆形或椭圆形,部分泡囊开始收缩衰老,同时皮层细胞内有少量丛枝并存。生长期间,菌根侵染率和孢子密度的变化与丛枝菌根的发育状况密切相关。  相似文献   
39.
Summary Red clover was grown in soil previously treated with P at various rates, and growth, nutrient uptake, nutrient uptake in relation to phosphorus values, and levels of vesicular-arbuscular mycorrhizal (VAM) infection were determined. The soil was a silty clay loam and Glomus lacteum was the only fungus colonizing the plant roots. An examination of the effects of various rates of P application and of VAM colonization on nutrient (P, K, Ca, Mg, Mn, Fe, and Zn) uptake showed that the Mg : P ratio significantly increased and the Mn : P ratio significantly decreased with increasing VAM infection. It is concluded that in the Trifolium pratense-Glomus lacteum symbiosis, mycorrhizae improve Mg uptake and depress Mn uptake.  相似文献   
40.
The aim of this work was to study the effect of arbuscular mycorrhizal fungus Glomus mosseae on growth and nitrogen (N) metabolism of durum wheat (Tritcum durum) under various P soil contents. The analyses were extended to macro and micronutrient tissue concentrations, nitrate reductase and glutamine synthetase activities, as well as protein, aminoacids, pyridine dinucleotides and adenine nucleotides. Arbuscular mycorrhiza increased wheat growth in soil in which P availability was low and nitrate was the dominant N form. The root colonization occurred at the highest level in plants grown in limiting soil P and was inversely related to soil P content. The micorrhizal wheat plants contained also the highest concentrations of macro (P, K, Ca, N) and micronutrients (Fe, Zn, Mn) as well as free amino acids, protein, NAD, NADP, AMP, ADP, ATP in roots and leaves. In particular, the micronutrient tissue concentrations (Zn, Mn) supported that mycorrhiza actively modulated their uptake limiting interferences and optimizing growth better than the plant roots, like a very efficient “rootstock”. Control plants grown at the highest soil P did not reach the same concentration as the mycorrhizal plants. Nitrate reductase activities in the roots of mycorrhizal plants were higher than in the control ones, while glutamine synthetase activities were highest in the leaves. Protein and amino acids concentrations, as well as AMP, ADP, ATP, NAD(P), and NAD(P)H were also higher than in the control. Among the free amino acids in the roots, the high levels of glutamine, asparagine, arginine, support the view that ammonium was transferred through the arbuscules to the root cells where it was re‐assimilated in the cortical cells, forming high N : C ratio‐amino acids. They were transferred to the leaves where all the other N compounds could be largely synthesized using the carbon skeletons supplied by photosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号