首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2604篇
  免费   159篇
  国内免费   239篇
林业   68篇
农学   354篇
基础科学   3篇
  125篇
综合类   929篇
农作物   293篇
水产渔业   3篇
畜牧兽医   95篇
园艺   200篇
植物保护   932篇
  2024年   19篇
  2023年   55篇
  2022年   122篇
  2021年   116篇
  2020年   106篇
  2019年   114篇
  2018年   87篇
  2017年   104篇
  2016年   140篇
  2015年   119篇
  2014年   99篇
  2013年   137篇
  2012年   172篇
  2011年   191篇
  2010年   141篇
  2009年   140篇
  2008年   139篇
  2007年   139篇
  2006年   116篇
  2005年   118篇
  2004年   70篇
  2003年   54篇
  2002年   54篇
  2001年   53篇
  2000年   38篇
  1999年   34篇
  1998年   31篇
  1997年   46篇
  1996年   36篇
  1995年   35篇
  1994年   25篇
  1993年   26篇
  1992年   34篇
  1991年   16篇
  1990年   15篇
  1989年   22篇
  1988年   7篇
  1987年   7篇
  1986年   6篇
  1985年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1962年   1篇
  1955年   8篇
排序方式: 共有3002条查询结果,搜索用时 515 毫秒
881.
Summary Fusarium wilt (Fusarium udum Butler) is a soil borne disease of pigeonpea which causes substantial yield losses. The disease can occur at any stage of plant development, from the young seedling to the pod filling stage. Though resistance is simply inherited, transfer to locally adapted cultivars has been difficult due to linkage drag and difficulty in accurate phenotyping, except in sick plots. An attempt was made to identify RAPD markers associated with wilt phenotype by using F2 populations derived from contrasting parents; GSl (susceptible) ‘ICPL87119 (resistant) and GS1’ ICP8863 (resistant). Parents and F2s were grown in a national Fusarium sick-plot at Gulbarga, India and phenotyped as resistant or susceptible during the entire crop growth period. In both the crosses, resistance to wilt segregated as a monogenic dominant character. DNA samples extracted from sick plot grown, early seedling stage plants of parents and 254 F2 plants of GS1 × ICPL87119 were held separately for marker identification. PCR reactions using 340 random decamer primers with genomic DNA of parents resulted in detection of 45 polymorphic amplicons from 39 primers. PCR testing of bulked DNA from subsets of resistant and susceptible plants revealed the presence of two amplicons at 704 bp and 500 bp (OPM03704 and OPAC11500) with susceptibility. Analysis of individual F2 plants showed a segregation ratio of 3: 1 for the presence: absence of the amplicon in both crosses. Considering the wilt reaction and susceptibility-linked RAPD marker, it was possible to deduce genotype of every F2 plant and the genotypic ratio for wilt reaction was 1RR: 2Rr: 1rr, as expected.  相似文献   
882.
Identity of quantitative trait loci (QTL) governing resistance to fusarium head blight (FHB) initial infection (type I), spread (type II), kernel infection, and deoxynivalenol (DON) accumulation was characterized in Chinese wheat line W14. Ninety‐six double‐haploid lines derived from a cross of W14 × ’Pion2684’ were evaluated for FHB resistance in two greenhouse and one field experiment. Two known major QTL were validated on chromosomes 3BS and 5AS in W14 using the composite interval mapping method. The 3BS QTL had a larger effect on resistance than the 5AS QTL in the greenhouse experiments, whereas, the 5AS QTL had a larger effect in the field experiment. These two QTL together explained 33%, 35%, and 31% of the total phenotypic variation for disease spread, kernel infection, and DON concentration in the greenhouse experiments, respectively. In the field experiment, the two QTL explained 34% and 26% of the total phenotypic variation for FHB incidence and severity, respectively. W14 has both QTL, which confer reduced initial infection, disease spread, kernel infection, and DON accumulation. Therefore, marker‐assisted selection (MAS) for both QTL should be implemented in incorporating W14 resistance into adapted backgrounds. Flanking markers Xbarc133 and Xgwm493 on 3BS and Xbarc117 and Xbarc56 on 5AS are suggested for MAS.  相似文献   
883.
1507 accessions from 93 species of 18 genera in Triticeae were screened for resistance to initial infection and resistance to pathogen spread with multi-floret and single-floret injection inoculation methods respectively. The accessions with high resistance were mainly found in perennial genera: Roegneria, Hystrix, Agropyron, Kengyilia and Elymus. Based on differences in resistance, 18 genera screened in Triticeae could be classified into five groups. The species with high resistance were mainly distributed in humid ecological environments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
884.
西瓜枯萎病菌遗传分化研究   总被引:8,自引:0,他引:8  
本试验利用21个RAPD随机引物对50个西瓜枯萎病菌系进行了RAPD扩增,研究了病菌遗传多样性。结果表明,对供试菌系扩增出134条带,其中多态性带113条,占总带数的84.3%。菌系间的遗传相似系数变化在0.45~0.93之间,多数菌系间的同源程度较低。基于RAPD标记聚类分析表明,50个菌系划分为6个RAPD群(RAPDgroups,简称RGs),即RGⅠ,RGⅡ,RGⅢ,RGⅣ,RGⅤ和RGⅥ。其中RGⅠ和RGⅡ各含有一个菌系,分别来自秦皇岛和新疆;RGⅢ和RGⅤ包括2个菌系,分别来自秦皇岛、承德和廊坊、沧州;RGⅣ包括唐山、石家庄、邯郸和新疆菌系;其余的菌系属于RGⅥ。分类结果进一步说明西瓜枯萎病菌间存在着较大的遗传分化。  相似文献   
885.
Fusarium head blight (FHB) in wheat and triticale leads to contamination of the grain with the mycotoxin deoxynivalenol (DON) that is harmful to animal and man. A fast, low-cost, and reliable method for quantification of the DON content in the grain is essential for selection. We analysed 113 wheat and 55 triticale genotypes for their symptom development on spikes, Fusarium exoantigen (ExAg) and DON content in the grain after artificial inoculation with a highly aggressive isolate of F. culmorum in three (wheat) and six (triticale) location-by-year combinations. Additionally, in triticale the amount of Fusarium damaged kernels (FDK) was assessed. ExAg content was analysed by a newly developed Fusarium-specific plate-trapped antigen enzyme-linked immunosorbent assay (PTA-ELISA) and DON content by an immunoassay. A moderate disease severity resulted in an ExAg content of 0.87 optical density (OD) units in wheat and 1.02 OD in triticale. DON content ranged from 12.0 to 105.2 mg kg–1 in wheat and from 24.2 to 74.0 mg kg–1 in triticale. Genotypic and genotype-by-environment interaction variances were significant (P < 0.01). Coefficient of phenotypic correlation between DON content analysed by the immunoassay and ExAg content was r = 0.86 for wheat and r = 0.60 for triticale. The highest correlation between DON content and symptom rating was found by FHB rating in wheat (r = 0.77) and by FDK rating in triticale (r = 0.71). In conclusion, selection for reduced FHB symptoms should lead to a correlated selection response in low fungal biomass and low DON content in the grain.  相似文献   
886.
Root lodging is an important problem in corn fields. Fungi recovered from roots include seedling blight and stalk rot pathogens. The objective of this work was to study the inheritance of maize seedling resistance to pathogens causing maize lodging. The Fusarium graminearum strain, 241 Fr1, was isolated from maize lodged plants and identified as the most pathogenic isolate for root rotting. Nine inbred lines of maize and their diallel F1 crosses plus control genotypes were studied. Seedlings were inoculated at the stage of four-leaves. Disease severity was measured as percentage of the root rotted area. Highly significant differences between inoculated and non-inoculated genotypes were found. Four genetic models and two statistical approaches—the mixed model for the best linear unbiased prediction (BLUP) and the general linear model (GLM)—were used for the analysis. Favorable heterosis of resistance of hybrids over inbreds was the most important effect detected. The general combining ability (GCA) effects were significant for all genetic models and statistical methods studied, and a good agreement existed among the GCA estimates by the different methods. The type of gene action, either additive or dominance, showed a large variation among the parental inbreds and hybrids. Selection of additive effects based exclusively on inbred lines is not sufficient to confer resistance to hybrids, additional selection should be practiced on hybrids to look for favorable dominance effects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
887.
Race 1 fusarium wilt tolerance on banana plants selected by fusaric acid   总被引:4,自引:0,他引:4  
Summary The selection of tolerant variants to race 1 fusarium wilt of banana was carried out through the effects of fusaric acid onin vitro banana multiple bud clumps (MBCs). The MBCs of Maçã cultivar (Musa sp., AAB, Silk), which is susceptible to the race 1 fusarium wilt, were used. And, Nanicão cultivar (AAA, Cavendish subgroup) was used in the tolerant tests as control of a disease tolerant variety. Firstly, to aim at determining an appropriate concentration of the toxin for the tolerant selection, the MBCs were cultured on the Modified Murashige & Skoog medium supplemented with 0.05 to 1.6 mM fusaric acid. The growth on both cultivars was completely inhibited on the medium containing 0.1 mM fusaric acid.Tolerant variants of Maçã were, then, selected with 0.1 mM fusaric acid after chemical mutagen treatment. The results showed an increased tolerance of the selected Maçã plants to the race 1 fungus in greenhouse tests. In vitro selection by fusaric acid is a very useful method for obtaining fusarium disease tolerance, although the tolerance mechanism of the selected plants may be different from that of existing tolerant cultivars.  相似文献   
888.
This preliminary study indicated that the resistance to race 2 of fusarium wilt is controlled by two genes, the first of which must be present in the homozygous recessive form, and the other in the dominant form, whether homozygous or heterozygous for complete resistance. Early wilting results if the other gene is homozygous recessive. Late wilting occurs if both loci are dominant. The existence of differences among chickpea cultivars in the time taken to express the initial symptoms of fusarium wilt were observed.  相似文献   
889.
Summary In a field trial, F3 winter wheat lines from plants selected for Fusarium head blight resistance in F2 generations of a set of crosses, composing a 10×10 half diallel, were tested with their parental lines for resistance to Fusarium culmorum. Selection responses averaged 3.7% on the head blight percentage scale and ranged from –22.0% to 27.1%. Realized heritabilities averaged 0.23 and ranged from 0 to 0.96. Significant transgression for resistance was observed which was suggested to be genetically fixed. It was estimated that resistant parents differed in one or two resistance genes. The possibility of accumulation of resistance genes was shown. The level of head blight resistance of the parental line appeared to be a good indicator of the potential resistance level of its crosses.  相似文献   
890.
M. Mardi    L. Pazouki    H. Delavar    M. B. Kazemi    B. Ghareyazie    B. Steiner    R. Nolz    M. Lemmens    H. Buerstmayr 《Plant Breeding》2006,125(4):313-317
Fusarium head blight (FHB or head scab) has become a major limiting factor for sustainable wheat (Triticum aestivum L.) production around the world. For quantitative trait loci (QTL) analysis of resistance to FHB, F3 plants and F3 : 5 lines, derived from a ‘Frontana’ (moderately resistant)/‘Seri82’ (susceptible) cross, were spray‐inoculated in 2001 and 2002, respectively. Artificial inoculations were carried out under field conditions. Of 273 SSR and AFLP markers, 250 could be mapped and they yielded 42 linkage groups, covering a genetic distance of 1931 cM. QTL analysis was based on the constructed linkage map and area under the disease progress curve (AUDPC). The analyses revealed three consistent QTLs associated with FHB resistance on chromosomes 1BL, 3AL and 7AS explaining 7.9%, 7.7% and 7.6% of the phenotypic variation, respectively, above 2 years. The results confirmed the previously described resistance QTL of ‘Frontana’ on chromosome 3AL. A combination of ‘Frontana’ resistance with ‘Sumai‐3’ resistance may lead to lines with augmented resistance expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号