首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   8篇
  国内免费   30篇
林业   97篇
农学   7篇
基础科学   29篇
  35篇
综合类   96篇
农作物   8篇
畜牧兽医   4篇
园艺   4篇
植物保护   1篇
  2024年   6篇
  2023年   9篇
  2022年   12篇
  2021年   7篇
  2020年   8篇
  2019年   12篇
  2018年   17篇
  2017年   10篇
  2016年   15篇
  2015年   20篇
  2014年   14篇
  2013年   11篇
  2012年   13篇
  2011年   12篇
  2010年   10篇
  2009年   15篇
  2008年   15篇
  2007年   8篇
  2006年   5篇
  2005年   17篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   4篇
  2000年   6篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1992年   2篇
  1991年   3篇
  1958年   1篇
排序方式: 共有281条查询结果,搜索用时 359 毫秒
151.
低温水热法制备竹生物炭及其对有机物的吸附性能   总被引:7,自引:5,他引:2  
竹是一类常见的生物质资源,竹加工中产生的废弃物是制生物炭的理想原料。该研究采用水热炭化法,在较低的水热温度下制备竹生物炭,并通过Na OH浸泡和N2氛围下高温煅烧2种方法,对竹生物炭进行进一步改性,所得产品用于去除水溶液中2-萘酚和刚果红。结果显示:仅采用水热炭化得到的竹生物炭产品得率大于54%,表面官能团丰富,均能吸附水溶液中的2-萘酚和刚果红,其中160℃3 h下制备的样品对2-萘酚吸附效果最好,200℃7 h下制备的样品对刚果红吸附效果最好;改性处理会降低终产品得率并影响表面官能团,Na OH浸泡改性处理能增加竹生物炭对2-萘酚和刚果红的吸附容量,N2氛围下高温煅烧改性则不能提高竹生物炭对这2种物质的吸附效果。研究结果可为废弃生物质制炭及生物炭在水污染物吸附分离中的应用提供参考。  相似文献   
152.
对雷州半岛6年生11种桉树无性系的林分生长量、生物量、炭化量进行了研究。结果表明:11种桉树无性系林分蓄积量大小排序为:GL4>GL9>DH32-22>LH5>DH201-2>LH1>M1>EC34>柳桉1>UC184-1>SH7,林分蓄积量最大的GL4是最小的SH7的2.12倍。11种桉树无性系各组分生物量变化不一致,但都以树干的最大,叶片的最小。LH5和GL4的林分生物量最大,均高于180t·hm-2,SH7和UC184-1林分生物量较小,均低于130t·hm-2,其它几种较为平均,在140~170t·hm-2之间。11种桉树无性系炭化量受林分生物量和炭化率影响,林分生物量和炭化率越大,炭化量越大。LH5、DH201-2、LH1和GL4的炭化率较高,均大于20%,UC184-1和SH7的炭化率最低。11种桉树无性系中LH5林分生物量最大,炭化率最高,故炭化量最高;其次为GL4和LH1,其炭化量均高于60t·hm-2,EC34、GL9、柳桉1、M1和DH32-22均大于50 t·hm-2,UC184-1的炭化量低于40 t·hm-2为最低。综合生长量、生物量和炭化率分析,GL4、LH5、GL9和DH32-224个无性系为一类,可作为薪炭林品系发展;LH1、EC34、DH201-2和M14个无性系划分为一类,作为薪炭林发展潜力较低;柳桉1、UC184-1和SH73个无性系为一类,不适合作为薪炭林发展。  相似文献   
153.
为了改善聚丙烯(polypropylene,PP)的力学性能,该文以木炭、聚丙烯(polypropylene,PP)为主要原料,采用双螺杆挤出机制备木炭/PP复合材料。并利用X射线衍射仪(X-ray diffractometer, XRD)、差式扫描量热仪(differential scanning calorimeter, DSC)、电子万能力学试验机、动态热机械分析仪(dynamic mechanical analyzer, DMA)、场发射扫描电镜(scanning electron microscope, SEM)等仪器对复合材料进行性能特性的表征分析。试验结果表明,PP基体在高温下以流体的形式流入木炭的孔隙,并与木炭相互缠绕、粘结,形成一种界面较为致密的结构,这种结构使得复合材料具有较好的静态力学性能(拉伸强度最高为25.47 MPa)与动态力学性能(储能模量最高为4 921.92 MPa)。研究结果可为木炭在生物基材料方面的应用提供新的思路。  相似文献   
154.
为有效解决现阶段生物质炭化设备存在的炭产率低、炭品质差、余气不能循环利用而污染环境、副产物不能有效分离等问题,设计并研制了一套废气自循环生物质炭化装备,对其炭化炉主体、加热系统、焦油回收装置、余气循环装置、温度压力监控系统分别进行了详细设计和参数确定,并以炭化炉主体和焦油回收装置为加热和冷却对象,采用有限元方法对其进行传热性能研究,最后对其进行了炭化试验研究。结果表明:生物质炭化装备能够满足制炭、副产物回收、废气循环利用、工艺参数精确控制等要求;炉体门框上部温度分布不均,其余炉体内部温度分布均匀,温度梯度平缓,可对生物质进行均匀加热;焦油回收装置在三级冷却水进口流速分别为0.045、0.03、0.015 m/s时,冷却温降分别为:271、111、61℃,烟气温度从500℃降温到50℃,冷却效果显著,并可对挥发分中的焦油和木醋液进行分离;影响炭产率、热值、能源得率的因素顺序为:炭化终温保温时间升温速率。炭产率与能源得率呈正相关,而两者又与热值成负相关。炭化条件在升温速率3℃/min、炭化终温450℃、保温时间3 h工况下较好,在此条件下的炭得率为54.2%,热值为25 767 k J/kg,能源得率为84.8%。  相似文献   
155.
热解温度对玉米秸秆炭产率及理化特性的影响   总被引:2,自引:0,他引:2  
【目的】通过对不同热解温度条件下玉米秸秆炭理化特性的分析,探索玉米秸秆炭具有较高利用价值的炭化温度。【方法】以玉米秸秆为原料,采用低氧升温炭化法,在不同热解温度下 (100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃) 分别炭化2 h,制备生物炭,收集并测定了固体产物生物炭产率及特性。【结果】生物炭的产率随热解温度的升高逐渐降低。生物炭全碳含量和碳氮比随热解温度升高而升高,全氮含量在400℃以后随热解温度升高而降低。阳离子交换量 (CEC) 在400℃~600℃达到较高水平,为70.87~83.48 cmol/kg。随热解温度升高,玉米秸秆炭表面碱性含氧官能团增加、酸性含氧官能团减少,pH随着热解温度的升高逐渐增加,当温度达到400℃及400℃以上时呈碱性甚至强碱性。红外光谱分析表明,热解温度达到500℃时,纤维素和半纤维素已经完全分解;高温热解使玉米秸秆中–CH3、–CH2、–OH、–C=O间发生缔合或消除,促进芳香基团的形成。随着热解温度的升高,玉米秸秆炭的比表面积和比孔容均是先变大后变小,孔径先变小后变大,在400℃~600℃条件下,玉米秸秆炭的孔隙相对较为丰富,不同热解温度下玉米秸秆炭的比表面积和比孔容呈极显著正相关关系(P < 0.01)。【结论】综合各项指标,玉米秸秆的最佳热解温度为400℃~500℃,此温度下制备的生物炭产出率相对较高,氮、碳养分损失少,生物炭的理化性能和养分利用均达到最优。  相似文献   
156.
[目的]为降低水热炭化的能耗及反应时间,设计开发预增压水热炭化工艺。[方法]以稻草为原料,通过FT-IR、XRD、BET等表征及对亚甲基蓝的吸附性能分析,研究增压介质和压力对水热炭化升温耗时、耗电以及对生物炭的影响规律。[结果]预增压后总升温时间最大可缩短63.917%,升温速率提高2.772倍,电加热效率提高1.657倍;水热反应体系的压力增加对炭产物表面官能团组成、产物晶相结构、表面积和吸附性能无显著影响,但可加快水热炭化进程,反应体系压力增加提高了体系中的底物浓度,从而使暴发聚合反应的饱和浓度提前出现;氦气比空气介质更有利于缩短水热反应周期,但节能效率及炭产物表面OH类官能团含量略低,可能与介质中氧浓度有关。所制炭对亚甲基蓝的吸附等温曲线符合Freundlich模型,样品的1/n在0.5~1.0,表现为优惠型吸附。[结论]该研究可为开发预增压水热炭化工艺提供科学依据。  相似文献   
157.
通过构建虎杖浮床对其净水能力进行研究,通过高效液相测定土生、水生长虎杖根、叶中虎杖苷含量。结果显示水生虎杖生长状况良好,粗壮浮床根越冬后第二年能正常发芽,在一定时间段内可持续使用;3.5%(虎杖重/水体重)虎杖20 d对养殖水体中TN、TP、NO3--N、NH4+-N去除率分别达到69.4%、71.3%、90.3%、74.1%,虎杖对污水各污染指标中NO3--N的吸收能力最强,其次是TN、TP、NH4+-N、NO2--N。土生虎杖根虎杖苷含量约为水中根的10倍,土生叶中虎杖苷含量比水生叶高出约50%。  相似文献   
158.
炭化温度对牛粪生物炭结构性质的影响   总被引:2,自引:0,他引:2  
以牛粪为原料,在不同炭化温度下(200、300、400、500、600、700 ℃)采用热裂解法制备生物炭,借助扫描电子显微镜、元素分析仪、比表面积分析仪,结合Boehm滴定法、碘吸附及亚甲蓝吸附等,对所制得的牛粪生物炭的形貌特征、元素组成、比表面积、孔径、表面官能团和吸附性能等进行分析。结果表明:随着炭化温度升高,产率和挥发分含量降低,灰分和固定碳含量升高,pH值增加,制得生物炭的形貌特征更有规则且孔隙更加紧密。适当的升高炭化温度有利于孔隙的形成及微孔数量的增多,比表面积和孔容逐渐变大,而孔径逐渐减小。随炭化温度升高,牛粪生物炭的C含量增加,而H、O含量减小,N含量先增加后减小,H/C、(O+N)/C和O/C均下降,说明制得生物炭的芳香性和结构稳定性增强,但极性和亲水性减弱。表面官能团中羧基含量随炭化温度升高先增加后降低,羰基含量持续增加,而内酯基、酚羟基含量、酸总量和表面含氧官能团总量逐渐降低。碘吸附值和亚甲基蓝吸附值随炭化温度升高先增加后减小,在600 ℃下吸附值最大。  相似文献   
159.
不同炭化温度和时间下牛粪生物炭理化特性分析与评价   总被引:1,自引:0,他引:1  
高含水率是牛粪现有处理方式的限制性因素之一。水热炭化技术不受牛粪高含水率的限制,是安全处置与资源化利用牛粪的极具潜力的技术措施之一。将新鲜牛粪在190℃和260℃下水热炭化处理不同时间(1、6、12h),收集并测定生物炭性质,并用熵权TOPSIS模型评价其农学应用价值。结果表明,牛粪生物炭理化性质因炭化温度和时间而异。炭化温度从190℃升高到260℃,反应时间由1h延长至12h,牛粪生物炭碳、全磷、全钾含量分别增加17.88%、39.06%和85.19%,而产率、氢与碳原子比、氧与碳原子比、氧氮与碳原子比、铵态氮含量、交换态磷含量和交换态钾含量则分别降低26.65%、24.00%、68.42%、64.29%、98.91%、89.26%和42.30%,炭化程度显著提高。牛粪生物炭红外谱图官能团吸收峰位置变化较小,随着炭化温度升高和时间延长,含氧官能团吸收峰强度降低,金属-卤素化合物吸收峰强度增加。提高炭化温度,延长反应时间,牛粪生物炭表面电荷量及其pH值依变性减弱,比孔容和比表面积也降低。整体而言,炭化温度对牛粪生物炭性质影响大于反应时间。低温短时间处理制备牛粪生物炭的农学应用潜力较大,更适宜作为土壤调理剂。  相似文献   
160.
我国秸秆资源丰富,但是焚烧秸秆现象严重,不仅浪费资源,而且带来一系列的环境问题。为此,以粉碎的生物质颗粒料为炭化原料,创新采用分步加热炭化的工艺路线,设计了一种直立式移动床生物质炭化设备。该设备采用闷烧热解以及间接加热的方式为生物质炭化提供热量,并利用绞龙、旋转炉篦等结构实现了生物质的连续炭化。详细介绍了该设备从整体到局部的设计流程,并对其重要参数的选择做了详细分析,同时针对重要结构进行强度分析。在设备的加工制造及组装过程中,发现该试制设备设计良好、装配方便、运行平稳,模块化设计便于安装和后期维护。以谷壳为炭化原材料,进行了功能性试验,谷壳炭化效果良好,表明其工艺路线设计较为合理。该设备结构合理、操作方便、可实现连续化生产,具有一定的市场前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号