首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   28篇
  国内免费   43篇
林业   17篇
农学   54篇
基础科学   14篇
  220篇
综合类   259篇
农作物   38篇
水产渔业   2篇
畜牧兽医   35篇
园艺   22篇
植物保护   29篇
  2024年   6篇
  2023年   13篇
  2022年   15篇
  2021年   14篇
  2020年   28篇
  2019年   28篇
  2018年   43篇
  2017年   45篇
  2016年   47篇
  2015年   21篇
  2014年   34篇
  2013年   67篇
  2012年   58篇
  2011年   25篇
  2010年   24篇
  2009年   29篇
  2008年   24篇
  2007年   41篇
  2006年   24篇
  2005年   28篇
  2004年   14篇
  2003年   5篇
  2002年   10篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1955年   1篇
排序方式: 共有690条查询结果,搜索用时 15 毫秒
31.
The effect of the application of acidified porous hydrate calcium silicate (APS) in nursery bed soil and porous hydrate calcium silicate (PS) in paddy fields on the growth of rice plants ( Oryza sativa L. cv. Hitomebore) was examined in 2002 and 2003. The results revealed the following: 1) Shoot dry weight of rice seedlings increased by APS treatment in nursery bed soil. The tiller number of rice plants after transplanting in both years also increased by APS treatment in nursery bed soil, and in 2003, the tiller number in the treatment with a combination of APS in nursery bed soil and PS in paddy fields was significantly higher than that in the other treatments until the maximum tiller number stage. Furthermore, the root length of rice plants 14 d after transplanting increased by APS treatment in nursery bed soil. 2) Silicon concentration in the soil solution significantly increased by PS treatment in paddy fields, and the concentration of dissolved carbon oxide increased by APS treatment in nursery bed soil. 3) Only in the APS treatment the rice yield was 341 g m−2, while 400 and 450 g m−2 in the PS and both APS and PS treatments, respectively, in 2003. Percentages of ripened grains in the plots without PS treatment ranged from 57 to 63%, respectively, while, those in the PS treated plots were 82%. The numbers of panicles and ripened grains in both APS and PS treatments were the highest among the treatments. Based on the above results, we concluded that both APS in nursery bed soil and PS in paddy field treatments were effective in improving the silicon nutrition and growth of rice plants, and that this effect was enhanced by a combination of treatments with the two.  相似文献   
32.
Alleviation of Chromium Toxicity by Silicon Addition in Rice Plants   总被引:2,自引:0,他引:2  
The alleviatory effect of silicon (Si) on chromium (Cr) toxicity to rice plants was investigated using a hydroponic experiment with two Cr levels (0 and 100 μmol L-1),three Si levels (0,1.25,and 2.5 mmol L-1) and two rice genotypes,differing in grain Cr accumulation (Dan K5,high accumulation and Xiushui 113,low accumulation).The results showed that 100 μmol L-1 Cr treatment caused a marked reduction of seedling height,dry biomass,soluble protein content,and root antioxidant enzyme activity,whereas significantly increased Cr concentration and TBARS (thiobarbituric acid reactive substances)content.However,the reductions of seedling height,dry biomass,and soluble content were greatly alleviated due to Si addition to the culture solution.Compared with the plants treated with Cr alone,Si addition markedly reduced Cr uptake and translocation in rice plants.No significant differences were observed between the two Si treatments (1.25 and 2.5 mmol L-1) in shoot Cr concentration and Cr translocation factor.Under the treatment of 100 μmol L-1 Cr+2.5 mmol L-1 Si,higher root Cr concentration but lower shoot Cr concentration and Cr translocation factor were observed in Dan K5 than those in Xiushui 113,indicating that the beneficial effect of Si on inhibiting Cr translocation was more pronounced in Dan K5 than in Xiushui 113.Si addition also alleviated the reduction of antioxidative enzymes (superoxide dismutase (SOD) and ascorbate peroxidase (APX) in leaves; catalase (CAT) and APX in roots) and the increase of TBARS content in the Crstressed plants.Furthermore,the beneficial effects of Si on activities of antioxidative enzymes under Cr stress were genotype-dependent.The highest activities of SOD,POD (guaiacol peroxidase),CAT,and APX in leaves occurred in the treatment of 100 μmol L-1 Cr+2.5 mmol L-1 Si for Xiushui 113 and in the treatment of 100 μmol L-1 Cr+1.25 mmol L-1 Si for Dan K5.The beneficial effect of Si on alleviating oxidative stress was much more pronounced in Dan K5 than in Xiushui 113.It may be concluded that Si alleviates Cr toxicity mainly through inhibiting the uptake and translocation of Cr and enhancing the capacity of defense against oxidative stress induced by Cr toxicity.  相似文献   
33.
采用土壤重金属正交L9(34)胁迫方法 ,通过盆栽试验,研究喷施有机硅和无机硅溶液对水稻叶片丙二醛(MDA)含量和变化趋势的影响。结果表明,土壤受重金属污染,水稻叶片MDA含量显著升高,随着重金属胁迫浓度升高,MDA含量逐渐增加;随着生长时期的延长,MDA含量呈现先升高后下降的趋势。不同种类重金属对水稻叶片MDA含量影响由大到小依次是Cd、Pb、Cu、Zn。经有机硅处理的水稻叶片MDA含量(504.63μmol/g FW)最低,无机硅处理(565.85μmol/g FW)次之,无硅处理(611.73μmol/g FW)最高,不同处理间叶片MDA含量差异水平极显著(P0.01)。可见,硅处理有利于维持水稻膜脂过氧化系统平衡,诱导其抵御重金属胁迫的毒害机制。  相似文献   
34.
35.
水肥耦合不仅可以维持草坪草的正常生长,而且可以减少一定的灌溉量。采用盆栽试验研究了不同土壤条件下硅对坪用高羊茅种子出苗及生长的影响。结果表明,不添加硅时,高羊茅种子适宜出苗时的土壤含水量应为饱和含水量的45%~60%,植株生长适宜的土壤含水量应为饱和含水量的75%以上;当土壤含水量大于或等于饱和含水量的60%时,添加硅不仅能够提前坪用高羊茅种子的初始出苗时间,缩短集中出苗时期,提高出苗率,而且能够显著促进高羊茅的株高和叶长生长,增加地上和地下生物量(P<0.05),而当土壤含水量小于或者等于饱和含水量的45%时,添加硅对高羊茅种子出苗和生长发育没有明显影响,说明添加硅对坪用高羊茅生长的有益作用受土壤含水量的约束;土壤含水量为饱和含水量的60%时,添加硅处理中植株的分蘖数、株高、叶长和生物量与对照处理中土壤含水量为饱和含水量的75%时植株的分蘖数、株高、叶长和生物量差异不显著,说明添加硅能降低高羊茅植株正常生长所需的土壤含水量,有利于节约灌溉量。  相似文献   
36.
37.
The aim of this study was to investigate the potential of silicon (Si) for alleviating Ultraviolet-B (UV-B) radiation stress based on changes in biomass, physiological attributes and photosynthetic characteristics of two soybean (Glycine max L.) cultivars, Kenjiandou 43 (‘K 43’) and Zhonghuang 35 (‘ZH 35’). The cultivars were raised with and without Si in the greenhouse, and then subjected to ambient, ambient + 2.7 kJ m?2d?1and ambient + 5.4 kJ m?2d?1of UV-B radiation. Depending on cultivar, plants suffered severe growth limitations under UV-B radiation, but the application of Si alleviated the adverse effects on growth and development by increasing the stem length, net photosynthetic rate (PN) and leaf chlorophyll content. Concurrently, it decreased the stomatal conductance (Sc) and intercellular carbon dioxide (CO2) concentration (Ci). In response to the UV-B radiation stress, the antioxidant enzyme activities of superoxide dismutase (SOD) increased by 41.2–72.7%, peroxidases (POD) by 49.5–85.7%, malodialdehyde (MDA) by 6.7–20.4% and soluble protein by 4.2–7.6%. The overall results indicated that media treatment with Si might improve soybean growth under elevated UV-B radiation through positive changes in biomass and some physiological attributes that were dependent on cultivar.  相似文献   
38.
目前,国内已有专门生产的硅窗气调袋的机械设备,但生产的品种与规格均有限,难以满足品种繁多的果蔬贮藏要求。由于需求的批量小,使气调袋生产成本增加,限制了其推广应用。为此,开发了一种用于加工硅窗气调袋的简易热合装置,该装置投资成本低、操作简单,适合小批量生产加工,并可以根据要求生产出不同硅窗面积的气调袋,具有现有加工机械不可替代的优势。  相似文献   
39.
新型高分子有机硅材料集流效率试验研究   总被引:3,自引:1,他引:3  
将高分子有机硅材料喷施在夯实的坡面上,在坡表面形成一层致密的防水膜,减少土壤入渗,增加径流量,从而提高了坡面的集流效率,并减少土壤的侵蚀量,是一种简单、方便的集雨方式。本试验以一种新型有机硅材料作为对象,采用室内渗透和室外人工模拟降雨试验,探讨其应用于集雨工程的可能性,并确定其最佳配比和最适宜用量。研究结果表明:硅水最优配比(体积比,文中所有硅水配比均指体积比)在1∶5~1∶7,适宜用量为150ml/m2。当雨强在1.2~1.5mm/min,前期含水率17%左右,干容重为1.3g/cm3左右,其集流效率可以达到70%以上,是对照夯实坡面集流效率的2~3倍,而侵蚀量只是对照坡面侵蚀量的1/5。新型有机硅材料具有集流效率高、成本低、施工简单等优点,在集雨工程中具有广阔的应用前景。  相似文献   
40.
Two plant species, tomato (Lycopersicon esculentum Mill.) and bitter gourd (Momordica charantia), were used for in‐depth studies on the dynamics of silicon (Si) uptake and translocation to the shoots and compartmentation of Si in the roots. The experiments were conducted under controlled environmental conditions in nutrient solutions, which were partly amended with 1 mM Si in the form of silicic acid. At harvest, xylem exudates were collected, and Si concentrations and biomass of roots and shoots were determined. Mass flow of Si was calculated based on the Si concentration of the nutrient solution and transpiration determined in a parallel experiment. Plant roots were subjected to a fractionated Si analysis, allowing attributing Si to different root compartments. Silicon concentrations in the roots compared to the shoots were higher in tomato but lower in bitter gourd. A more ready translocation from the roots to the shoots in bitter gourd was in agreement with Si concentrations in the xylem exudates which were higher than in the external solution. In tomato, the xylem‐sap Si concentration was lower than in the nutrient solution. Calculated Si mass flow to the root exceeded Si uptake in tomato, which was consistent with the measured accumulation of Si in the root water‐free space (WFS). In contrast, Si concentration in the root WFS was lower than in the nutrient solution in bitter gourd, reflecting the calculated Si depletion at the root surface based on the comparison of Si mass flow and Si uptake. Within the roots, more than 80% of the total Si was located in the cell wall and less than 10% in the cytoplasmic fractions in tomato. In bitter gourd, between 60% and 70% of the total root Si was attributed to the cell‐wall fraction whereas the proportion of the cytoplasmic fraction reached more than 30%. Our results clearly confirm that tomato belongs to the Si excluders and bitter gourd to the Si‐accumulator plant species for which high Si concentrations in the cytoplasmic root fraction appear to be characteristic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号