In this study, the changes in vitamin C, l-ascorbic acid (AA) and l-dehydroascorbic acid (DHA) levels in broccoli flower buds were examined during pre-storage and storage periods, simulating refrigerated transport with wholesale distribution and retail, respectively. Broccoli heads were pre-stored for 4 or 7 days at 0 °C or 4 °C in the dark and then stored for 3 days at 10 °C or 18 °C. During storage the broccoli heads were exposed for 12 h per day to three different levels of visible light (13, 19 or 25 μmol m−2 s−1) or a combination of visible light (19 μmol m−2 s−1) and UV-B irradiation (20 kJ m−2 d−1), or they were stored in the dark. The vitamin C content in broccoli flower buds during storage was significantly affected by pre-storage period and temperature. Higher vitamin C levels in flower buds after storage were observed for broccoli heads pre-stored for 4 days or at 0 °C as compared to those pre-stored for 7 days or at 4 °C. Storage temperature also affected vitamin C in broccoli flower buds, with higher levels observed for broccoli stored at 10 °C than at 18 °C. Hence, vitamin C in broccoli flower buds was demonstrated to decrease together with increasing pre-storage period, pre-storage temperature and storage temperature. AA in broccoli flower buds was influenced mainly by storage temperature and to a minor extent by pre-storage temperature. The DHA level and DHA/AA ratio were stable in flower buds of broccoli pre-stored for 7 days, whereas increasing tendencies for both DHA level and ratio were observed after pre-storage for 4 days. These results indicate a shift in the ascorbate metabolism in broccoli flower buds during storage at low temperatures, with its higher rate observed for broccoli pre-stored for shorter time. There were no effects of the light and UV-B irradiation treatments on vitamin C, AA and DHA levels in broccoli flower buds. 相似文献
甘肃金鳟是我国自主培育的虹鳟新品种,为进行其种质资源研究和遗传管理,以其尾鳍为试验材料,提取基因组DNA,对影响甘肃金鳟扩增片断长度多态性(AFLP)反应体系进行优化,包括模板DNA浓度、基因组酶切时间、选择性扩增中Mg2+、预扩增产物稀释倍数及选扩性引物M+3/E+3配比等进行比较分析,建立了适于甘肃金鳟的AFLP反应体系。即:100 ng 基因组DNA,3 U EcoR I 37℃酶切3 h,再 Mse I 65℃酶切5 h;然后用1 U的T4连接酶连接12 h, 选扩25 μl PCR反应体系中Mg2+2.0 mmol/L,预扩产物稀释30倍,选扩引物M+3/E+3配比为8∶1,所得产物经电泳和银染后可获得清晰条带,效果良好;筛选出了适宜甘肃金鳟品种分析的13对选择性引物。 相似文献
We evaluated chukar (Alectoris chukar) watering patterns as well as habitat variables influencing water site selection in western Utah. Motion-sensing cameras and chukar dropping counts were primary techniques to evaluate watering patterns. We took vegetative and other habitat measurements at each water source (n = 43) to discriminate use from nonuse sites using logistic regression. Chukars watered during daylight hours with a modal hour from 1200 hours to 1300 hours daylight savings time. Annual patterns suggest limited use of water sources from November to May with first observed visits occurring in June and last observed visits in October. Shrub canopy cover was the only variable to discriminate between site types (P &spilt; 0.01). Cross validation showed a predictive success rate of 84%. Significant differences were found between use and nonuse sites in terms of security cover (P &spilt; 0.01), but not total cover (P &spigt; 0.05). Chukars seem to have a loose shrub canopy threshold near 11% that is likely due to predation risk. Water sources meeting this threshold received use, whereas those not meeting this threshold did not. Increasing shrub canopy cover above 11% did not translate into increased water source use. Managers might want to consider annual patterns when setting hunt season timing and structure as well as judging sites for new water developments based on shrub canopy cover. More generally, these results suggest a behavioral constraint on the use of water sources as a function of predation risk—we should expect other species to demonstrate similar behavioral constraints. These constraints must be considered in any effort to determine benefits or impacts of water developments. 相似文献
We synthesize findings to date from the world’s largest and longest-running experimental study of habitat fragmentation, located in central Amazonia. Over the past 32 years, Amazonian forest fragments ranging from 1 to 100 ha have experienced a wide array of ecological changes. Edge effects have been a dominant driver of fragment dynamics, strongly affecting forest microclimate, tree mortality, carbon storage, fauna, and other aspects of fragment ecology. However, edge-effect intensity varies markedly in space and time, and is influenced by factors such as edge age, the number of nearby edges, and the adjoining matrix of modified vegetation surrounding fragments. In our study area, the matrix has changed markedly over the course of the study (evolving from large cattle pastures to mosaics of abandoned pasture and regrowth forest) and this in turn has strongly influenced fragment dynamics and faunal persistence. Rare weather events, especially windstorms and droughts, have further altered fragment ecology. In general, populations and communities of species in fragments are hyperdynamic relative to nearby intact forest. Some edge and fragment-isolation effects have declined with a partial recovery of secondary forests around fragments, but other changes, such as altered patterns of tree recruitment, are ongoing. Fragments are highly sensitive to external vicissitudes, and even small changes in local land-management practices may drive fragmented ecosystems in markedly different directions. The effects of fragmentation are likely to interact synergistically with other anthropogenic threats such as logging, hunting, and especially fire, creating an even greater peril for the Amazonian biota. 相似文献