Biochar has agronomic potential but currently is too expensive for widespread adoption. New methodologies are emerging to reduce the cost such as enriching biochar with nutrients that match crops and soil requirements. However, the effects of biochar-based fertilisers on plant yield and soil nutrient availability have not been widely examined. This study investigated the effects of a novel organo-mineral biochar fertiliser in comparison to organic and commercial biochar fertiliser on ginger (Zingiber officinale Canton).
Materials and methods
There were four treatments: (1) commercial organic fertiliser (5 t ha?1), as the control; (2) commercial biochar-based fertiliser (5 t ha?1); (3) organo-mineral biochar fertiliser at low rate (3 t ha?1); and (4) organo-mineral biochar fertiliser at high rate (7.5 t ha?1). A replicated pot trial was established with black dermosol soil and ten replicate pots for each treatment. Ginger was planted and grown for 30 weeks. Plant growth, biomass, foliar nutrients and water extractable soil nutrients including phosphorus (P), potassium (K) and calcium (Ca) were examined.
Results and discussion
High rate organo-mineral biochar fertiliser increased soil P and K availability at week 30 (harvest) after planting, compared to all other treatments and low rate organo-mineral biochar fertiliser performed similarly to the organic control for P and K. High rate organo-mineral biochar fertiliser increased total foliar nutrient content at week 30 in P, K and Ca compared to commercial biochar fertiliser. High rate organo-mineral biochar fertiliser improved the commercial value of ginger (+?36%) due to a shift in the proportion of higher grade rhizomes. Low rate organo-mineral biochar fertiliser plants displayed similar yield, total dry and aboveground biomass to commercial organic fertiliser. Commercial biochar fertiliser had significantly lower biomass measures compared with other treatments as the rate applied had lower nutrient concentrations.
Conclusions
Our results show organo-mineral biochar fertilisers could be substituted for commercial organic fertilisers at low rates to maintain similar yield or applied at high rates to increase commercial value where economically feasible.
Cheddar cheese has previously been shown to be an effective vehicle for delivery of viable cells of a probiotic Enterococcus faecium strain to the gastrointestinal tract. The particular strain, E. faecium PR88, has proven efficacy in the treatment of irritable bowel syndrome, and in this study it was evaluated for suitability as a starter adjunct for Cheddar cheese manufacture. When added to cheesemilk at an inoculum of 2 x 10(7) cfu/mL, the enterococcal adjunct maintained viability in Cheddar cheese at levels of up to 3 x 10(8) cfu/g during 9 months of ripening. Increased proteolysis and higher levels of some odor-active volatile compounds were observed in Cheddar cheeses containing the PR88 adjunct compared with the control throughout the ripening period. In addition, the enterococcal adjunct strain did not affect cheese composition. Although sensory evaluation showed no significant difference in flavor/aroma and body/texture scores between control and experimental cheeses, repeated comments by the commercial grader consistently described the cheeses containing PR88 as 'more advanced than the control' and as having 'better flavor'. These findings indicate that the presence of the PR88 adjunct strain in Cheddar cheese at levels of >/=10(8) cfu/g may positively influence Cheddar flavor. 相似文献
Upland cotton (Gossypium hirsutum) requires adequate nitrogen (N) for optimum yields. Foliar applications of urea to supplement soil applied N have been tried for many years across the Cotton Belt, but responses have been highly variable. No published information is available regarding response by irrigated cotton to foliar applied N in subtropical South Texas. This study investigated the response of cotton to foliar applied urea and triazone N over a three-year period near Weslaco, Texas. In all years, foliar applied urea tended to increase seed cotton yield when soil applied N was limiting. In the absence of soil applied N, the increase due to foliar urea was significant in two of the three years (28.7 and 15.7% increases). Foliar applied triazone N was ineffective at increasing seed cotton yields. 相似文献
The relationship between fine-scale spatial patterns of forage abundance and the feeding patterns of large ungulates is not well known. We compared these patterns for areas grazed in winter by elk and bison in a sagebrush-grassland landscape in northern Yellowstone National Park. At a fine scale, the spatial distribution of mapped feeding stations in 30 m × 30 m sites was found to be random where there were no large patches devoid of vegetation. In areas similar to the mapped sites, the underlying spatial distribution pattern of biomass was also determined to be random. At a broad scale, forage biomass differed among communities across the northern range but forage quality did not. These results suggest that ungulates are feeding randomly within forage patches (fine scale) but may select feeding sites based upon forage abundance at broader, landscape scales. Contrary to what has been suggested in other systems, ungulates were not overmatching at finer scales. 相似文献
Zeins, the storage proteins of maize, are totally lacking in the essential amino acids lysine and tryptophan. Lysine codons and lysine- and tryptophan-encoding oligonucleotides were introduced at several positions into a 19-kilodalton zein complementary DNA by oligonucleotide-mediated mutagenesis. A 450-base pair open reading frame from a simian virus 40 (SV40) coat protein was also engineered into the zein coding region. Messenger RNAs for the modified zeins were synthesized in vitro with an SP6 RNA polymerase system and injected into Xenopus laevis oocytes. The modifications did not affect the translation, signal peptide cleavage, or stability of the zeins. The ability of the modified zeins to assemble into structures similar to maize protein bodies was assayed by two criteria: assembly into membrane-bound vesicles resistant to exogenously added protease, and ability to self-aggregate into dense structures. All of the modified zeins were membrane-bound; only the one containing a 17-kilodalton SV40 protein fragment was unable to aggregate. These findings suggest that it may be possible to create high-lysine corn by genetic engineering. 相似文献
Obesity is increasing in developing countries. Population studies show a relationship between affluence and obesity. Changing food intake patterns with affluence such as preference for foods with less astringent polyphenolic compounds and dietary fibers may increase risk of metabolic dysfunctions due to caloric imbalance. Animal models of obesity consistently show that grape seed procyanidins prevent increases in body and abdo- minal adipose weight gain, plasma cholesterol, liver weight gain and inflammation in animals on high fat diets. The mechanisms are not clear because the oral intake of procyanidins results in pleiotropic interactions with proteins in the mouth, stomach, small intestine, cecum and colon that affect the rate of digestion of bioavailability of macronutrients, sterols, and dietary fiber. Procyanidins also bind bile acids and reduce intestinal permeability to inflammatory bacterial cell wall fragment. Procyanidins are not degraded or metabolized until reaching the lower gut where they can be metabolized into phenolic acids by gut bacteria. While they are metabolized by gut bacteria, they also alter total numbers and distribution of phyla and species of gut bacteria. Gut bacteria are recognized as significant contributors to obesity and obesity related metabolic diseases. The review examines the different pleiotropic effects of grape seed procyanidins that have a significant effect on metabolic disease in animal models of obesity. 相似文献
The physiological effects of the hydrolysates of white rice protein (WRP), brown rice protein (BRP), and soy protein (SP) hydrolyzed by the food grade enzyme, alcalase2.4 L, were compared to the original protein source. Male Syrian Golden hamsters were fed high-fat diets containing either 20% casein (control) or 20% extracted proteins or their hydrolysates as the protein source for 3 weeks. The brown rice protein hydrolysate (BRPH) diet group reduced weight gain 76% compared with the control. Animals fed the BRPH supplemented diet also had lower final body weight, liver weight, very low density lipoprotein cholesterol (VLDL-C), and liver cholesterol, and higher fecal fat and bile acid excretion than the control. Expression levels of hepatic genes for lipid oxidation, PPARα, ACOX1, and CPT1, were highest for hamsters fed the BRPH supplemented diet. Expression of CYP7A1, the gene regulating bile acid synthesis, was higher in all test groups. Expression of CYP51, a gene coding for an enzyme involved in cholesterol synthesis, was highest in the BRPH diet group. The results suggest that BRPH includes unique peptides that reduce weight gain and hepatic cholesterol synthesis. 相似文献