首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   12篇
林业   8篇
  12篇
综合类   8篇
农作物   5篇
水产渔业   14篇
畜牧兽医   30篇
园艺   6篇
植物保护   22篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   7篇
  2018年   7篇
  2017年   4篇
  2016年   6篇
  2015年   7篇
  2014年   5篇
  2013年   2篇
  2012年   3篇
  2011年   5篇
  2010年   6篇
  2009年   7篇
  2008年   6篇
  2007年   8篇
  2006年   2篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1997年   1篇
  1991年   2篇
  1988年   1篇
  1985年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
101.
How climatic variability and anthropogenic pressures interact to influence recruitment is a key factor in achieving sustainable resource management. However, the combined effects of these pressures can make it difficult to detect non‐stationary interactions or shifts in the relationships with recruitment. Here we examine the links between climate and Irish Sea cod recruitment during a period of declining spawning stock biomass (SSB). Specifically, we test for a shift in the relationship between recruitment, SSB and climate by comparing an additive (generalized additive model, GAM) and non‐additive threshold model (TGAM). The relationship between recruitment success, SSB and the climatic driver, sea surface temperature, was best described by the TGAM, with a threshold identified between recruitment and SSB at approximately 7900 t. The analysis suggests a threshold shift in the relationship between recruitment and SSB in Irish Sea cod, with cod recruitment being more sensitive to climatic variability during the recent low SSB regime.  相似文献   
102.
103.
Threonine (Thr) is important for mucin and immunoglobulin production. We studied the effect of added dietary Thr on growth performance, health, immunity and gastrointestinal function of weaning pigs with differing genetic susceptibility to E. coli K88ac (ETEC) infection and challenged with ETEC. Forty‐eight 24‐day‐old weaned pigs were divided into two groups by their ETEC susceptibility using mucin 4 (MUC4) gene as a marker (2 MUC4?/?, not‐susceptible, and 2 MUC4+/+, susceptible, pigs per litter). Within genotype, pigs were fed two different diets: 8.5 (LThr) or 9.0 (HThr) g Thr/kg. Pigs were orally challenged on day 7 after weaning and slaughtered on day 12 or 13 after weaning. Before ETEC challenge, HThr pigs ate more (p < 0.05). The diet did not affect post‐challenge growth, but HThr tended to increase post‐challenge feed efficiency (p = 0.087) and overall growth (p = 0.087) and feed efficiency (p = 0.055). Before challenge, HThr pigs excreted less E. coli (p < 0.05), while after challenge, diet did not affect the number of days with diarrhoea and ETEC excretion. MUC4+/+ pigs responded to the challenge with more diarrhoea, ETEC excretion and anti‐K88 IgA in blood and jejunal secretion (p < 0.001). HThr pigs had a higher increase of anti‐K88 IgA values in jejunal secretion (p = 0.089) and in blood (p = 0.089, in MUC4+/+ pigs only). Thr did not affect total IgA and IgM values, morphometry of jejunum, goblet cells count in colon, total mucin from jejunum and colon, but varied jejunal goblet cells counts (p < 0.05). In the first two post‐weaning weeks, 8.5 g Thr/kg diet may be not sufficient to optimize initial feed intake, overall feed efficiency and intestinal IgA secretion and to control the gut microbiota in the first post‐weaning week, irrespective of the pig genetic susceptibility to ETEC infection.  相似文献   
104.
An age-length structured model was built for European hake Merluccius merluccius in the central Mediterranean Sea using Gadget. This analytical framework allowed to integrate multiple sources of information, including fisheries-dependent and fisheries-independent data, collected at different scales and aggregation levels. The model includes the two main fisheries targeting hake in the area, the trawl and the gillnet fisheries, and account for differences in their selectivity and effort. Alternative models were used for testing different assumptions on recruitment and growth. The model is then used to predict the main trajectory of the stock during the next years and to evaluate the potential effects of implementing closed areas management scenarios in the hake nurseries as a specific tool to reduce fishing mortality on recruits. The modelling framework presented performed successfully also in a commercial landing data limited context, common for the Mediterranean. Our results provide statistical support for fast growth and multiple recruitment events assumptions. Including both these key features represent an unprecedented improvement of modelling hake population dynamics in the Mediterranean. We found that the reduction in the fishing effort that characterized the fisheries in the study area during the last few years, coupled with fast recovery abilities of the hake stock, has the potentiality to allow a moderate increase of the stock during the next years. Interestingly, our simulations show that the positive effects which might be expected from protecting hake nursery grounds are only marginally related to a reduction in hake recruits fishing mortality. Although our model relies on assumptions and surely represents an over-simplification of the real world, it still contributed to improve our understanding of the temporal dynamics of one of the most valuable fish stocks in the central Mediterranean.  相似文献   
105.
Climate change and anthropogenic disturbances may affect marine populations and ecosystems through multiple pathways. In this study we present a framework in which we integrate existing models and knowledge on basic regulatory processes to investigate the potential impact of future scenarios of fisheries exploitation and climate change on the temporal dynamics of the central Baltic herring stock. Alternative scenarios of increasing sea surface temperature and decreasing salinity of the Baltic Sea from a global climate model were combined with two alternative fishing scenarios, and their direct and ecosystem‐mediated effects (i.e., through predation by cod and competition with sprat) on the herring population were evaluated for the period 2010–2050. Gradual increase in temperature has a positive impact on the long‐term productivity of the herring stock, but it has the potential to enhance the recovery of the herring stock only in combination with sustainable fisheries management (i.e., Fmsy). Conversely, projections of herring spawning stock biomass (SSB) were generally low under elevated fishing mortality levels (Fhigh), comparable with those experienced by the stock during the 1990s. Under the combined effects of long‐term warming and high fishing mortality uncertainty in herring SSB projections was higher and increasing for the duration of the forecasts, suggesting a synergistic effect of fishery exploitation and climate forcing on fish populations dynamics. Our study shows that simulations of long‐term fish dynamics can be an informative tool to derive expectations of the potential long‐term impact of alternative future scenarios of exploitation and climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号