首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48973篇
  免费   2688篇
  国内免费   33篇
林业   1701篇
农学   1661篇
基础科学   251篇
  5835篇
综合类   8196篇
农作物   1545篇
水产渔业   2717篇
畜牧兽医   26328篇
园艺   574篇
植物保护   2886篇
  2019年   416篇
  2018年   777篇
  2017年   824篇
  2016年   743篇
  2015年   607篇
  2014年   750篇
  2013年   1736篇
  2012年   1347篇
  2011年   1690篇
  2010年   1154篇
  2009年   1096篇
  2008年   1682篇
  2007年   1593篇
  2006年   1497篇
  2005年   1380篇
  2004年   1394篇
  2003年   1371篇
  2002年   1184篇
  2001年   1913篇
  2000年   1984篇
  1999年   1498篇
  1998年   569篇
  1997年   499篇
  1996年   449篇
  1995年   612篇
  1994年   524篇
  1993年   459篇
  1992年   1151篇
  1991年   1211篇
  1990年   1178篇
  1989年   1097篇
  1988年   1056篇
  1987年   1081篇
  1986年   1034篇
  1985年   966篇
  1984年   803篇
  1983年   683篇
  1982年   421篇
  1981年   382篇
  1979年   635篇
  1978年   500篇
  1977年   441篇
  1976年   408篇
  1975年   451篇
  1974年   523篇
  1973年   507篇
  1972年   531篇
  1971年   449篇
  1970年   424篇
  1969年   464篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
The molecular basis of the sparse fur mouse mutation   总被引:30,自引:0,他引:30  
The ornithine transcarbamylase-deficient sparse fur mouse is an excellent model to study the most common human urea cycle disorder. The mutation has been well characterized by both biochemical and enzymological methods, but its exact nature has not been revealed. A single base substitution in the complementary DNA for ornithine transcarbamylase from the sparse fur mouse has been identified by means of a combination of two recently described techniques for rapid mutational analysis. This strategy is simpler than conventional complementary DNA library construction, screening, and sequencing, which has often been used to find a new mutation. The ornithine transcarbamylase gene in the sparse fur mouse contains a C to A transversion that alters a histidine residue to an asparagine residue at amino acid 117.  相似文献   
112.
Whether rising atmospheric carbon dioxide (CO2) concentrations will cause forests to grow faster and store more carbon is an open question. Using free air CO2 release in combination with a canopy crane, we found an immediate and sustained enhancement of carbon flux through 35-meter-tall temperate forest trees when exposed to elevated CO2. However, there was no overall stimulation in stem growth and leaf litter production after 4 years. Photosynthetic capacity was not reduced, leaf chemistry changes were minor, and tree species differed in their responses. Although growing vigorously, these trees did not accrete more biomass carbon in stems in response to elevated CO2, thus challenging projections of growth responses derived from tests with smaller trees.  相似文献   
113.
114.
115.
ABSTRACT Production of cacao in tropical America has been severely affected by fungal pathogens causing diseases known as witches' broom (WB, caused by Moniliophthora perniciosa), frosty pod (FP, caused by M. roreri) and black pod (BP, caused by Phytophthora spp.). BP is pan-tropical and causes losses in all producing areas. WB is found in South America and parts of the Caribbean, while FP is found in Central America and parts of South America. Together, these diseases were responsible for over 700 million US dollars in losses in 2001 (4). Commercial cacao production in West Africa and South Asia are not yet affected by WB and FP, but cacao grown in these regions is susceptible to both. With the goal of providing new disease resistant cultivars the USDA-ARS and Mars, Inc. have developed a marker assisted selection (MAS) program. Quantitative trait loci have been identified for resistance to WB, FP, and BP. The potential usefulness of these markers in identifying resistant individuals has been confirmed in an experimental F(1) family in Ecuador.  相似文献   
116.
Within-leaf variations in cell size, mitochondrial numbers and dark respiration rates were compared in the most recently expanded tip, the mid-section and base of needles of Pinus radiata D. Don trees grown for 4 years in open-top chambers at ambient (36 Pa) or elevated (65 Pa) carbon dioxide partial pressure (p(CO2)a). Mitochondrial numbers and respiratory activity varied along the length of the needle, with the highest number of mitochondria per unit cytoplasm and the highest rate of respiration per unit leaf area at the base of the needle. Regardless of the location of the cells (tip, middle or basal sections), needles collected from trees grown in elevated p(CO2)a had nearly twice the number of mitochondria per unit cytoplasm as those grown in ambient p(CO2)a. This stimulation of mitochondrial density by growth at elevated p(CO2)a was greater at the tip of the needle (2.7 times more mitochondria than in needles grown in ambient CO2) than at the base of the needle (1.7 times). The mean size of individual mitochondria was unaffected either by growth at elevated p(CO2)a or by position along the needle. Tree growth at elevated p(CO2)a had a variable effect on respiration per unit leaf area, significantly increasing respiration in the tip of the needles (+25%) and decreasing respiration at the mid-section and base of the needles (-14% and -25%, respectively). Although a simple relationship between respiration per unit leaf area and mitochondrial number per unit cytoplasm was found within each CO2 treatment, the variable effect of growth at elevated p(CO2)a on respiration along the length of the needles indicates that a more complex relationship must determine the association between structure and function in these needles.  相似文献   
117.
118.
119.

The within-plant distribution of the cassava green spider mite, Mononychellus tanajoa Bondar, and the anatomical characteristics and the chemical components relating to varietal resistance of cassava, were studied using 11 cassava genotypes with varying levels of resistance for two dry seasons and one wet season. The results show that M. tanajoa aggregates on the top leaves of cassava at low levels of resistance as compared with a more even within-plant distribution at higher levels of resistance. Thus, for accurate sampling of mite populations, it might be important to consider young and old leaves, not just the young leaves, in fields containing resistant and susceptible cassava genotypes. Correlations between the anatomical characteristics and mite population density and damage scores were not consistent across months, either within or over seasons. This suggests that leaf anatomical characteristics may not be important in the varietal resistance of cassava to M. tanajoa. During the dry season, mite population density was positively correlated with leaf nitrogen, potassium and phosphorus and negatively correlated with leaf calcium and fat. Only calcium was negatively associated with mite damage at the peak of the dry season (January 1993 and 1994). Breeding cassava genotypes with high levels of leaf calcium and fat, and low levels of leaf nitrogen, potassium and phosphorus, may improve the level of resistance to M. tanajoa.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号