Geogenic lead (Pb) is considered to be less bioavailable than anthropogenic Pb and exerts less effect on the soil fauna. However, Pb contamination in vegetables has been reported in the case of geogenic anomalies, even at moderate concentrations (around 170 mg kg–1). In this study, we investigated collembolan communities using both taxonomic- and trait-based approaches and observed fungal communities to assess the effects of a moderate geogenic Pb anomaly on collembolans and fungi in an urban vegetable garden soil. Results indicated that geogenic Pb indeed modified fungi communities and altered the functional structure of collembolan communities in garden soils. Although geogenic Pb presented low bioavailability, it affected soil fauna and vegetables similar to anthropogenic Pb. 相似文献
The presence and activity of individual plants can affect soil resource availability and microbial processes, and can influence the spatial scale over which soil properties vary. While soils have been found to differ under plants of differing growth form (i.e. grasses vs. trees), few studies have focused on small-scale soil differences under comparably-sized species. Here we investigate how two types of C-3 grasses influence patterns in soil properties and processes at scales of less than one meter in a California grassland. To understand how native perennial grasses differ from invasive annual grasses in their effects on soils, we used cross-semivariogram analysis to quantify the degree and scale of spatial heterogeneity in soil properties and processes in experimentally-seeded grasslands. We then used mapping techniques to correlate spatial patterns of soil properties and processes with the cover of annual and perennial grasses aboveground. We found that many soil properties and processes belowground were spatially-correlated with the aboveground presence of annuals or perennials. Soil moisture became more heterogeneous with increasing amounts of perennial cover, suggesting that perennial bunchgrass individuals take up more water and produce zones of resource depletion in comparison with soils directly under annual grasses. The association of belowground resources and activity with the two types of grass suggests that the historical shift from perennial to annual dominance in California grasslands led to changes in the small-scale spatial structure of soil properties and processes in these systems. These changes may alter ecosystem function and could potentially perpetuate invasive annual grass dominance. 相似文献
This study assesses the potential of two contrasted fragrant Pelargonium cultivars to induce pH and dissolved organic carbon (DOC) changes in the soil solution, Pb speciation, and their subsequent effects on rhizosphere phytoavailable Pb.
Materials and methods
Rooted plantlets were grown in special devices, floating on aerated nutrient solution in PVC tanks. This setup allows roots to be physically separated, through a mesh, from a 3-mm soil matrix layer that can be considered as rhizosphere soil. Two contrasted soils, each spiked with Pb-rich particles, emitted from a battery recycling industry, were used at total burdens of 500 and 1500 mg Pb kg?1 in addition to a control unspiked soil. Soil solution pH, phytoavailable Pb, DOC, Pb adsorption, precipitation on roots, and Pb phases in soil and plant were investigated.
Results and discussion
Attar of Roses (Attar) cultivar acidified its rhizosphere by 0.4 pH units in both spiked soils. Concolor Lace (Concolor) was unable to change soil solution pH on soil-1 and increased it by 0.7 units on soil 2. Concentrations of Pb in soil solution from Attar plants were always higher than those of Concolor ones. DOC contents of both unspiked soil-1 and soil-2 without plants were not significantly different. In the case of spiked samples, DOC contents in the rhizosphere soil were increased by three and two times for Attar and Concolor, respectively, compared to the unspiked soil without plant. Both cultivars were able to increase DOC contents, independent of soil type and level of contamination. Accumulation of Pb in shoots and roots was higher in Attar as compared to Concolor due to enhanced available Pb as a result of pH and DOC modifications of the rhizosphere soil. Significant amounts of Pb were adsorbed on roots of both cultivars. X-ray elemental analysis of precipitates on roots revealed the association of Pb with P in cylinder-like structures. Extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that Pb was present, to a major extent in the inorganic form, mainly as PbSO4 in the soil, whereas it was complexed with organic species within plant tissues. The conversion of Pb into organic species could decrease toxicity, may enhance plant tolerance, and could increase translocation.
Conclusions
Plant-induced changes were responsible for the modification of lead phases within the soil. Immobile forms present in the source leaded particles as well as in the soils were converted into soluble species, ultimately improving the phytoavailable or soil solubilized Pb.
The C mineralisation pattern during the early stage of decomposition of plant materials is largely determined by their content
of different carbohydrates. This study investigated whether detailed plant analysis could provide a better prediction of C
mineralisation during decomposition than proximate analysis [neutral detergent solution (NDF)/acid detergent solution (ADF)].
The detailed analysis included sugars, fructans, starch, pectin, cellulose, lignin and organic N. To determine whether differences
in decomposition rate were related to differences in hemicellulose composition, the analysis particularly emphasised the concentrations
of arabinose and xylose in hemicelluloses. Carbon dioxide evolution was monitored hourly in soil amended with ten different
plant materials. Principal component and regression analysis showed that C mineralisation during day 1 was closely related
to free sugars, fructans and soluble organic N components (R2 = 0.83). The sum of non-cellulose structural carbohydrates (intermediate NDF/ADF fraction) was not related to C mineralisation
between days 1 and 9. In contrast, a model including starch and protein in addition to the non-cellulose structural carbohydrates,
with the hemicelluloses replaced by arabinose and xylose, showed a strong relationship with evolved CO2 (R2 = 0.87). Carbon mineralisation between days 9 and 34 was better explained by xylan, cellulose and lignin (R2 = 0.72) than by lignocellulose in the ADF fraction. Our results indicated that proximate analyses were not sufficient to
explain differences in decomposition. To predict C mineralisation from the range of plant materials studied, we propose a
minimum set of analyses comprising total N, free sugars, starch, arabinose, xylan, cellulose and lignin. 相似文献
The identification of fish species in transformed food products is difficult because the existing methods are not adapted to heat-processed products containing more than one species. Using a common to all vertebrates region of the cytochrome b gene, we have developed a denaturing high-performance liquid chromatography (DHPLC) fingerprinting method, which allowed us to identify most of the species in commercial crab sticks. Whole fish and fillets were used for the creation of a library of referent DHPLC profiles. Crab sticks generated complex DHPLC profiles in which the number of contained fish species can be estimated by the number of major fluorescence peaks. The identity of some of the species was predicted by comparison of the peaks with the referent profiles, and others were identified after collection of the peak fractions, reamplification, and sequencing. DHPLC appears to be a quick and efficient method to analyze the species composition of complex heat-processed fish products. 相似文献
The majority of bitches that are brought to a veterinarian for reproductive evaluation are actually healthy. Infertility in the bitch is most commonly due to inappropriate breeding management rather than an inability to conceive. Before embarking on an exhaustive medical evaluation, it is important to obtain a thorough history and physical examination to identify any problems. Completion of a routine database assists in detecting significant systemic illness that may impact infertility. After consideration of history, physical examination, and minimum database, fertility problems are most commonly considered in one of four categories: abnormal estrous cycles, normal estrous cycles, failure to breed, or failure to carry a litter to term. This classification system aids in construction of a differential list and systematic evaluation of all differentials. The majority of diagnostic tests required are available to the general practitioner. Before any treatment for infertility, adequate health management must be ensured. Specific treatment for the most common causes of infertility is centered on appropriate breeding management. 相似文献
Routine gill swabbing is a non-destructive sampling method used for the downstream qPCR detection and quantitation of the pathogen Neoparamoeba perurans, a causative agent of amoebic gill disease (AGD). Three commercially available swabs were compared aiming their application for timelier AGD diagnosis (Calgiswab® (calcium alginate fibre-tipped), Isohelix® DNA buccal and cotton wool-tipped). Calcium alginate is soluble in most sodium salts, which potentially allows the total recovery of biological material, hence a better extraction of target organisms’ DNA. Thus, this study consisted of (a) an in vitro assessment involving spiking of the swabs with known amounts of amoebae and additional assessment of retrieval efficiency of amoebae from agar plates; (b) in vivo testing by swabbing of gill arches (second, third and fourth) of AGD-infected fish. Both in vitro and in vivo experiments identified an enhanced amoeba retrieval with Calgiswab® and Isohelix® swabs in comparison with cotton swabs. Additionally, the third and fourth gill arches presented significantly higher amoebic loads compared to the second gill arch. Results suggest that limiting routine gill swabbing to one or two arches, instead of all, could likely lead to reduced stress-related effects incurred by handling and sampling and a timelier diagnosis of AGD. 相似文献
Previous predictions of sea-level change subsequent to the last glacial maximum show significant, systematic discrepancies between observations at Tahiti, Huon Peninsula, and Sunda Shelf during Lateglacial time (approximately 14,000 to 9000 calibrated years before the present). We demonstrate that a model of glacial isostatic adjustment characterized by both a high-viscosity lower mantle (4 x 10(22) Pa s) and a large contribution from the Antarctic ice sheet to meltwater pulse IA (approximately 15-meters eustatic equivalent) resolves these discrepancies. This result supports arguments that an early and rapid Antarctic deglaciation contributed to a sequence of climatic events that ended the most recent glacial period of the current ice age. 相似文献