首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16446篇
  免费   4篇
林业   3621篇
农学   1297篇
基础科学   138篇
  2751篇
综合类   706篇
农作物   2098篇
水产渔业   1782篇
畜牧兽医   1085篇
园艺   1110篇
植物保护   1862篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2746篇
  2017年   2702篇
  2016年   1180篇
  2015年   65篇
  2014年   18篇
  2013年   8篇
  2012年   794篇
  2011年   2128篇
  2010年   2103篇
  2009年   1257篇
  2008年   1314篇
  2007年   1575篇
  2006年   32篇
  2005年   99篇
  2004年   104篇
  2003年   151篇
  2002年   61篇
  2001年   4篇
  2000年   42篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1993年   12篇
  1992年   7篇
  1990年   2篇
  1989年   5篇
  1988年   12篇
  1987年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1977年   4篇
  1972年   1篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
A study was conducted to determine the dynamic of Zn content between soil and plant in the natural protection zone of Leymus chinensis grassland in Changling County (44°30′–44°45′N; 123°31′–124°10′E), Jilin Province, China. Results showed that the total Zn content was lower, available Zn content had a moderate level in the soil, and the plants was not lack of Zn. During the growing season, content of total Zn and available Zn in soil showed a down-trend distribution along the soil profile. Content of total Zn had a significantly positive correlation with that of the organic matter, but it was negatively correlated to soil pH. Monthly dynamic of the average content of total Zn showed a “V” type curve in the growing season from May to August, and July was the nadir. The trend of the average content of available Zn was similar to the content of total Zn, but was down after August; Zn content variation in the organs and litter of L. chinensis was great, with the order of root>rhizome >leaf>stem>litter. The ratio of available Zn content in A layer versus B layer was more than 2 times that of the total Zn, which indicated that the soil of A layer had higher enrichment capacity of available Zn. The enrichment of Zn in the root of L. chinensis was 44.17 times as that in the soil. The absorbing intensity of root had a significantly negative correlation with the activity of Zn in the soil (r=−0.8800, p<0.01). Biography: ZHOU Xiao-mei (1966–), female, Ph.D., associate professor of Jilin Normal University, Siping 136000, P.R. China.  相似文献   
942.
Lyyra S  Lima A  Merkle SA 《Tree physiology》2006,26(7):969-975
Black willow (Salix nigra Marsh.) is the largest and only commercially important willow species in North America. It is a candidate for phytoremediation of polluted soils because it is fast-growing and thrives on floodplains throughout eastern USA. Our objective was to develop a protocol for the in vitro regeneration of black willow plants that could serve as target material for gene transformation. Unexpanded inflorescence explants were excised from dormant buds collected from three source trees and cultured on woody plant medium (WPM) supplemented with one of: (1) 0.1 mg l(-1) thidiazuron (TDZ); (2) 0.5 mg l(-1) 6-benzoaminopurine (BAP); or (3) 1 mg l(-1) BAP. All plant growth regulator (PGR) treatments induced direct adventitious bud formation from the genotypes. The percentage of explants producing buds ranged from 20 to 92%, depending on genotype and treatment. Although most of the TDZ-treated inflorescences produced buds, these buds failed to elongate into shoots. Buds on explants treated with BAP elongated into shoots that were easily rooted in vitro and further established in potting mix in high humidity. The PGR treatments significantly affected shoot regeneration frequency (P < 0.01). The highest shoot regeneration frequency (36%) was achieved with Genotype 3 cultured on 0.5 mg l(-1) BAP. Mean number of shoots per explant varied from one to five. The ability of black willow inflorescences to produce adventitious shoots makes them potential targets for Agrobacterium-mediated transformation with heavy-metal-resistant genes for phytoremediation.  相似文献   
943.

Key message

For an optimal deployment of poplar resistance to the gall-inducing aphid Phloeomyzus passerinii , a laboratory susceptibility assay has been developed. The nature of aphid–tree interactions during compatible and incompatible situations has been studied in detail. This should help at identifying specific resistance markers and at testing effects of site conditions on tree–pest interactions.

Context

P. passerinii is a major pest of poplar plantations in Europe, and the plantation of resistant poplar genotypes is regarded as the best long-term management strategy for this pest. This requires a sound knowledge of the interactions among the pest, its host and their environment.

Aims

Here, we review the recent advances aiming at developing an optimal deployment of host resistance versus P. passerinii.

Results

Investigations on aphid-host interactions demonstrated that P. passerinii induces pseudogalls within the bark of susceptible hosts. This results in a reduction of starch bark content during aphid outbreaks, which could be involved in tree death. The constitutive level of starch in the bark could be related to the tolerance level of trees. A susceptibility test has been designed for poplar genotypes, discriminating three categories of susceptibility depending on tree’s ability to totally or partially inhibit pseudogall induction. The test still has several limitations however. It neither takes into account the large level of individual genetic diversity of the aphid in France, nor the environmental modulation of tree resistance and tolerance, while water deficit and fertilization could potentially affect these parameters.

Conclusion

The hypotheses drawn regarding the processes leading to tree death or resistance should help at identifying resistance markers, and at testing effects of site conditions on tree–pest interactions.
  相似文献   
944.
Pinus tabulaeformis has been widely planted in order to conserve soil and water and improve the ecological environment in China. This study aimed to unravel how soil aggregates and soil carbon (C) stock stability of a P. tabulaeformis plantation change after 60 years of natural development and was performed in Vitex negundo var. heterophylla and Ziziphus jujuba var. spinosa shrub (shrub), a P. tabulaeformis forest (pine), and a coniferous broadleaf P. tabulaeformis mixed forest (pine-oak). Afforestation increased the stability of soil aggregates in the 0–10 cm soil layer but resulted in a decrease in the 10–20 cm soil layer. However, the presence of deciduous broadleaf species in the pine plantation improved the stability of soil aggregates. The total soil C stock was increased by afforestation, especially in the pine-oak forest, where it reached a significant level. The mineral soil C stock in the shrub stand was higher than that in pine and lower than that in pine-oak forests, but the C fractions had a different change. Afforestation increased the C fraction of macroaggregates in the 0–10 cm soil layer but decreased it in the 10–20 cm soil layer. This result suggested that afforestation could improve soil C stabilization in deeper soil. However, the pine-oak forest had a higher C fraction of macroaggregates than the pine forest in the 10–20 cm soil layer, indicating that soil C stabilization of the P. tabulaeformis plantation decreased when deciduous broadleaf species were present and thus formed the coniferous broadleaf mixed forest.  相似文献   
945.
The ecosystem services provided by the Bangladesh Sundarbans contribute in various sectors especially to the livelihood of the surrounding peoples, but they are often overlooked in the valuation process. This study investigates the significance of ecosystem services on peoples’ lives and how these services are affected by climate change and other factors. Here an economic valuation framework was used to list the ecosystem services provided by this mangrove forest. Direct uses included timber, golpata (Nypa fruticans), honey, beeswax, fish, shrimp larvae and tourism. Indirect uses included carbon storage, protection from cyclones and tidal surges, breeding and nursery grounds for the aquatic species, and biodiversity conservation. This work also found that the ecosystem services were diminished by fresh water flow reduction, overharvesting, sea level rise, salinity increase, poaching, and climate change. In the present context and future scenario, sea level rise will be an important contributor to changes in ecosystem services. But because many factors impact sea level rise, the impact of climate change takes on less importance than many other causes of ecosystem service degradation in the Bangladesh Sundarbans.  相似文献   
946.
The miombo woodland is one of the most extensive woodlands in Africa, supporting livelihoods based on biomass fuel for millions of rural people. However, there are growing concerns about the sustainability of harvesting for biomass fuel(mainly charcoal). Thus, the aim of this study was to examine whether regeneration by coppice is a viable option for sustainably managing miombo woodlands for biomass fuel production. We tested the hypotheses that(1) species, stump diameter, stump height and time since cutting significantly affect the number of sprouts per cut stump(coppice density) and mean sprout height(shoot vigour) and(2) higher coppice density reduces shoot vigour due to competition among coppice shoots in a given stump. In an inventory in areas that were harvested for charcoal production by the local people, 369 stumps of 11 species were recorded with mean coppice stumps ranged from 6 to 84. The mean coppice density ranged from 5 to 8 shoots per stump while the mean height of coppice shoots ranged from 46 to 118 cm with marked interspecific variations. Stump size was significantly and positively correlated with coppice density for some of the species, but not with shoot vigour for the majority of the species. However, shoot vigour was significantly positively correlated to time since cutting of trees for nearly half of the species. Coppice density had a significant negative correlation with shoot vigour for two species, and a positive correlation for one species. In conclusion, the results provide evidence about the importance of coppice management as a win–win strategy for sustaining charcoal-based rural livelihoods and recovering the miombo woodland ecosystem.  相似文献   
947.
Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to the capacitive exchange between the transpiration stream and stem water storage. Significant errors will be introduced in canopy conductance (gc) and canopy transpiration estimation if the time lag is neglected. In this study, a cross-correlation analysis was used to quantify the time lag, and the sap flow-based transpiration was measured to parameterize Jarvis-type models of gc and thus to simulate Ec of Populus cathayana using the Penman–Monteith equation. The results indicate that solar radiation (Rs) and vapor pressure deficit (VPD) are not fully coincident with sap flow and have an obvious lag effect; the sap flow lags behind Rs and precedes VPD, and there is a 1-h time shift between Ec and sap flow in the 30-min interval data set. A parameterized Jarvis-type gc model is suitable to predict P. cathayana transpiration and explains more than 80% of the variation observed in gc, and the relative error was less than 25%, which shows a preferable simulation effect. The root mean square error (RMSEs) between the predicted and measured Ec were 1.91 × 10?3 (with the time lag) and 3.12 × 10?3 cm h?1 (without the time lag). More importantly, Ec simulation precision that incorporates time lag is improved by 6% compared to the results without the time lag, with the mean relative error (MRE) of only 8.32% and the mean absolute error (MAE) of 1.48 × 10?3 cm h?1.  相似文献   
948.
Leaf functional traits are adaptations that enable plants to live under different environmental conditions. This study aims to evaluate the differences in leaf functional traits between red and green leaves of two evergreen shrubs Photinia × fraseri and Osmanthus fragrans. Specific areas of red leaves are higher than that of green leaves in both species. Thus, the material investment per unit area and per lamina of red leaves is significantly lower than that of green leaves, implying an utmost effort of red leaves to increase light capture and use efficiency because of their low leaf-chlorophyll concentration. The higher petiole length of green leaves compared with that of red leaves indicates that adult green leaves may have large fractional biomass allocation to support the lamina structures in capturing light with maximum efficiency and obtaining a high growth rate. The high range of the phenotypic plasticity of leaf size, leaf thickness, single-leaf wet and dry weights, and leaf moisture of green leaves may be beneficial in achieving efficient control of water loss and nutrient deprivation. The high range of phenotypic plasticity of leaf chlorophyll concentration of red leaves may be advantageous in increasing resource (especially light) capture and use efficiency because this leaf type is juvenile in the growth stage and has low leaf-chlorophyll concentration.  相似文献   
949.
The origin of a seed strongly impacts its traits, and both origin and seed traits influence seed germination and seedling development. However, in many instances, this effect on the seedling does not persist into adulthood, and little is known about how seed traits and original environment affect seedling/tree growth over time. In this study, seed size, seed mass, seedling/tree growth and origins were collected and determined for 23 provenances of Quercus acutissima from across China. Origin variables correlated well with seed size and seed mass. In stepwise multiple regressions, a longitudinal aridity index explained 49.2–68.7% of the total variation in seed size and mass, while only seed width was correlated with seedling/tree height (H) and diameter at the ground (D) from seed traits and origins. The total variance in H and D explained by the models decreased over time, for example, the R 2 value of the models for H declined from 0.477 in the first year to 0.224 in the fourth year; no models was significant in the fifth year. These results indicate that seed size, regulated by the longitudinal aridity index strongly impacted seedling and tree growth, but the strength of the influence decreased over time, and disappeared after 4 years.  相似文献   
950.
The present study was an effort to understand the amount of litter fall and its subsequent decomposition and quantify the release of available nutrients and soil physicochemical characteristics in plantations of four forest tree species(Lagerstroemia parviflora, Tectona grandis, Shorea robusta and Michelia champaca) in the Chilapatta Reserve Forest of the Cooch Behar Wildlife Division in the Terai zone of West Bengal, India. The most litter(5.61 Mg ha~(-1))was produced by T. grandis plantation and the least(4.72 Mg ha~(-1)) by L. parviflora. The material turnover rate to the soil through decomposition from total litter was fastest during the first quarter of the year and subsequently decreased during the next two quarters. The material turnover rate was only 1 year, which indicates that more than90% of the total litter produced decomposed within a year.The available primary nutrient content in litter varied across the four plantations over the year. The plantations generally did not significantly influence the soil physical characteristics but did significantly influence the availability of primary nutrients and organic carbon at two depths(1–15 and16–30 cm) over the year. The availability of soil primary nutrients in the four plantations also increased gradually from the first quarter of the year to the third quarter and then decreased during the last quarter to the same level as in the first quarter of the year at both depths. The availability for soil organic carbon in the plantations followed a similar trend. The amount of litter produced and the material turnover in the soil in the different plantations differed, influencing the nutrient availability and organic carbon at the plantations. The amount of soil organic carbon was highest for T. grandis(2.52 Mg ha~(-1)) and lowest for L. parviflora(2.12 Mg ha~(-1)). Litter is the source of soil organic matter,and more the litter that is produced by the plantations, the higher will be the content and amount of soil organic carbon in the plantation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号