首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   8篇
  国内免费   3篇
林业   27篇
农学   18篇
基础科学   3篇
  186篇
综合类   31篇
农作物   14篇
水产渔业   13篇
畜牧兽医   21篇
园艺   6篇
植物保护   18篇
  2023年   3篇
  2022年   4篇
  2021年   3篇
  2020年   13篇
  2019年   7篇
  2018年   4篇
  2017年   9篇
  2016年   15篇
  2015年   7篇
  2014年   8篇
  2013年   30篇
  2012年   4篇
  2011年   8篇
  2010年   9篇
  2009年   7篇
  2008年   25篇
  2007年   9篇
  2006年   7篇
  2005年   16篇
  2004年   5篇
  2003年   8篇
  2002年   10篇
  2001年   10篇
  2000年   8篇
  1999年   4篇
  1998年   2篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   8篇
  1990年   2篇
  1989年   15篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1971年   4篇
  1970年   3篇
  1966年   2篇
排序方式: 共有337条查询结果,搜索用时 15 毫秒
11.
Soil carbon sequestration impacts on global climate change and food security   总被引:69,自引:0,他引:69  
Lal R 《Science (New York, N.Y.)》2004,304(5677):1623-1627
The carbon sink capacity of the world's agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon. The rate of soil organic carbon sequestration with adoption of recommended technologies depends on soil texture and structure, rainfall, temperature, farming system, and soil management. Strategies to increase the soil carbon pool include soil restoration and woodland regeneration, no-till farming, cover crops, nutrient management, manuring and sludge application, improved grazing, water conservation and harvesting, efficient irrigation, agroforestry practices, and growing energy crops on spare lands. An increase of 1 ton of soil carbon pool of degraded cropland soils may increase crop yield by 20 to 40 kilograms per hectare (kg/ha) for wheat, 10 to 20 kg/ha for maize, and 0.5 to 1 kg/ha for cowpeas. As well as enhancing food security, carbon sequestration has the potential to offset fossil fuel emissions by 0.4 to 1.2 gigatons of carbon per year, or 5 to 15% of the global fossil-fuel emissions.  相似文献   
12.
Reclamation of drastically disturbed minesoils and subsequent planting of trees and/or grasses can result in a rapid build‐up of carbon (C) in the soil. However, the amount of C sequestered in reclaimed minesoils may vary with the amount of time since reclamation. In this study, we assessed total carbon (TC) and total nitrogen (TN) concentrations for reclaimed minesoils located in northeastern Ohio and characterized by distinct reclamation age chronosequences. Reclaimed minesoils studied were R78G, reclaimed in 1978 and immediately seeded to grass; R82GT, reclaimed in 1982 and immediately seeded to grass and trees were planted 5 years later; and R87G, reclaimed in 1987 and immediately seeded to grass. An unmined site, UMG, was also included as a reference. Our objectives were to evaluate the variability with respect to mean and the spatial variability of pH, bulk density (ρb), TC and TN concentrations, and stocks in each reclaimed minesoil. Thirty soil samples were collected at each of the 0–15, 15–30, and 30–50 cm depth. The coefficient of variation (CV) for ρb was least, <15 per cent at each site and depth. For TN concentration and stock, CV was moderate, 15–35 per cent, in each field except the UMG where it was high, >35 per cent at 0–15, and 15–30 cm depths. For TC concentration and stocks, CV was high, >35 per cent, across all minesoils and generally increased with depth. The C/N ratio followed the same tend as TC and TN stocks and ranged from 40 per cent to 123 per cent across minesoils. Geostatistical analysis also showed an increase in sample variance with increasing amount of time since reclamation for most soil properties under investigation. Sample variance for TC concentration and stocks also increased with depth in reclaimed minesoils. However, no definite relationship emerged between amount of time since reclamation and the spatial dependence of TC and TN concentrations and stocks. Overall this study showed that reclamation of drastically disturbed minesoils increased the soil C concentration and stocks and reclamation by initially seeding to grasses followed by planting trees was the best management option for speedy accretion of soil C and soil quality enhancement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
13.
Establishment of ornamental and aesthetic plants in hot, arid conditions of India is difficult due to the prevailing climatic, edaphic and biotic factors. Effect of turfgrass on the growth of ornamental plants in hot arid conditions has not been studied so far anywhere in the world. A study was conducted on the campus of Arid Forest Research Institute, Jodhpur, India to assess the performance of a few ornamental plant species in combination with turfgrass and without turfgrass with respect to different soil tilling intervals. Growth of plants was better with turfgrass than without turfgrass. We suggest adopting a soil tilling interval of 30 days to achieve optimum growth of ornamental plant species in terms of height and crown diameter. Our results can help reduce labor costs and achieving better landscapes in fewer days in hot urban conditions of Indian sub continent.  相似文献   
14.
Forest soils and carbon sequestration   总被引:36,自引:0,他引:36  
R. Lal   《Forest Ecology and Management》2005,220(1-3):242-258
Soils in equilibrium with a natural forest ecosystem have high carbon (C) density. The ratio of soil:vegetation C density increases with latitude. Land use change, particularly conversion to agricultural ecosystems, depletes the soil C stock. Thus, degraded agricultural soils have lower soil organic carbon (SOC) stock than their potential capacity. Consequently, afforestation of agricultural soils and management of forest plantations can enhance SOC stock through C sequestration. The rate of SOC sequestration, and the magnitude and quality of soil C stock depend on the complex interaction between climate, soils, tree species and management, and chemical composition of the litter as determined by the dominant tree species. Increasing production of forest biomass per se may not necessarily increase the SOC stocks. Fire, natural or managed, is an important perturbation that can affect soil C stock for a long period after the event. The soil C stock can be greatly enhanced by a careful site preparation, adequate soil drainage, growing species with a high NPP, applying N and micronutrients (Fe) as fertilizers or biosolids, and conserving soil and water resources. Climate change may also stimulate forest growth by enhancing availability of mineral N and through the CO2 fertilization effect, which may partly compensate release of soil C in response to warming. There are significant advances in measurement of soil C stock and fluxes, and scaling of C stock from pedon/plot scale to regional and national scales. Soil C sequestration in boreal and temperate forests may be an important strategy to ameliorate changes in atmospheric chemistry.  相似文献   
15.
16.
17.
R. Lal 《Geoderma》1976,16(5):419-431
Erosion-induced changes in the physical characteristics of the surface soil under different soil and crop management treatments were monitored over a period of two years. These studies were conducted on field runoff plots established on natural slopes of 1, 5, 10 and 15%. The soil and crop management treatments consisted of bare-fallow, maize-maize (plowed and mulched), maize-maize (plowed), maize-cowpeas (no-till) and cowpeas-maize (plowed).Soil erosion increased the gravel content and decreased the silt and clay contents of the surface horizon. The moisture retention capacity of the surface soil decreased significantly. The infiltration rate decreased from 3.5 cm/min on all plots in February 1972 to 0.2 cm/min under bare-fallow, to 0.6 cm/min under maize-maize (mulch), to 1.5 cm/min under maize-cowpeas (no-till) and to 0.1 cm/min under maize-maize (plowed) in February 1974. Maize yields on the mulch and no-till treatments were maintained while those on plowed plots declined. Artificial soil removal resulted in significant reductions of maize and cowpea yields.  相似文献   
18.
Milk vetch dwarf virus (MDV) is an important member of the genus Nanovirus and is transmitted by the aphid Aphis craccivora. MDV has multiple single-stranded DNA genome components, each approximately 1 kb, and two or three alpha-satellite molecules. It mainly infects plants of the legume family Fabaceae. Recently, papaya (Carica papaya) collected in Yesan, South Korea, displaying symptoms of leaf yellowing and dwarfism, was identified as a new host for MDV. To examine the geographical distribution of MDV, papaya samples with symptoms were harvested in South Korea, Vietnam, and Taiwan in August 2018, along with tomato and pepper samples grown in adjacent fields in Vietnam. The results revealed the presence of MDV not only in papaya but also in pepper and tomato. This MDV infection in members of the Solanaceae family was confirmed by Southern blot hybridization performed using a PCR product of segment S as a probe. Based on sequence analysis of three MDV components (M, S, and C3), we verified the presence of three different isolates of MDV in these three countries and homology between sequences of isolates from papaya and from members of the Solanaceae from Vietnam. Taken together, our results clearly demonstrate MDV infection in Vietnam and Taiwan for the first time and confirm that MDV can infect economically important pepper and tomato.  相似文献   
19.
Chemical composition of the kernels and seedcoats of 8 cucurbit species, viz watermelon, muskmelon, cucumber, pumpkin, spongegourd, bottlegourd, bittergourd and snakegourd have been studied. The proportion of kernels in these seeds ranged from 48.0 to 75.5%. Oil content in kernels varied from 41.0 to 56.5%, protein 28.07 to 34.34%, crude fibre 1.25 to 2.60% and mineral matter 3.01 to 5.01%. Kernels were quite rich in calcium, iron and phosphorus. The cucurbit species compared well with some of the conventional kernels such as cashewnut and almond in their chemical make-up. Although quite low in fat and protein, the seedcoats of these cucurbit species were quite rich in crude fibre and mineral matter and could be of use as animal feed.  相似文献   
20.
The effect of soil management and land use change are of interest to the sustainable land management for improving the environment and advancing food security in developing countries. Both anthropogenic changes and natural processes affect agriculture primarily by altering soil quality. This paper reviews and synthesizes the available literatures related to the influence of soil management and land use changes on soil carbon (C) stock in Ethiopia. The review shows that topsoil C stock declines approximately 0–63%, 0–23%, and 17–83% upon land use conversion from forest to crop land, to open grazing, and to plantation, respectively. An increase of 1–3% in soil C stock was observed within 10 years of converting open grazed land to protected enclosures. However, there was a little change in soil C stock below 20 cm depth. There is a large potential of increasing SOC pool with adoption of land restorative measures. Total potential of soil C sequestration with the adoption of restoration measures ranges 0·066–2·2 Tg C y−1 on rain‐fed cropland and 4·2–10·5 Tg C y−1 on rangeland. Given large area and diverse ecological conditions in Ethiopia, research data available in published literature are rather scanty. Therefore, researchable priorities identified in this review are important. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号