首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1512篇
  免费   110篇
  国内免费   2篇
林业   117篇
农学   41篇
基础科学   6篇
  314篇
综合类   168篇
农作物   48篇
水产渔业   235篇
畜牧兽医   505篇
园艺   62篇
植物保护   128篇
  2024年   6篇
  2023年   11篇
  2022年   14篇
  2021年   29篇
  2020年   37篇
  2019年   53篇
  2018年   53篇
  2017年   48篇
  2016年   61篇
  2015年   59篇
  2014年   44篇
  2013年   83篇
  2012年   101篇
  2011年   109篇
  2010年   91篇
  2009年   70篇
  2008年   94篇
  2007年   82篇
  2006年   90篇
  2005年   77篇
  2004年   71篇
  2003年   79篇
  2002年   55篇
  2001年   22篇
  2000年   16篇
  1999年   14篇
  1998年   9篇
  1997年   10篇
  1996年   5篇
  1995年   8篇
  1994年   6篇
  1993年   9篇
  1992年   6篇
  1991年   9篇
  1990年   8篇
  1989年   9篇
  1988年   6篇
  1987年   6篇
  1985年   6篇
  1984年   7篇
  1983年   7篇
  1982年   4篇
  1981年   9篇
  1979年   4篇
  1977年   2篇
  1976年   4篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
  1968年   2篇
排序方式: 共有1624条查询结果,搜索用时 15 毫秒
81.

Context

In tropical areas, studies based on the retrospective analysis of tree development have focused principally on growth ring research. The interpretation of primary growth markers is overlooked although it opens perspectives to provide long time-series on tree-crown development.

Aims

This study focused on Parkia velutina, an emergent tree of neotropical rain forests. Our objectives were (1) to characterize the phenological cycle of this species, and (2) to identify temporally interpretable morphological and anatomical markers.

Methods

We collected dominant branches in 14 adult trees and identified growth markers that limit longitudinal and radial increments. We coupled this approach with a 2-year phenological survey of 20 trees.

Results

Leaf shedding, growth unit elongation and growth ring formation define the phenological cycle. At tree scale, this cycle is synchronous and affects all axes. At population scale, trees can be desynchronized. This cycle is annual despite some slight variability. Successive growth units and growth rings are easily identifiable.

Conclusion

Dating a branch by counting the number of growth units or growth rings is possible in many years with a reasonable error. Nevertheless, estimating their precise month of formation in order to study climatic influences remains difficult.  相似文献   
82.
  • ? Tree recruitment in Mediterranean savannas is generally hampered, in contrast with the original oak forests where these savannas are derived from. We asked whether this difference in recruitment success can be explained by differential post-dispersal survival. For one year we monitored experimentally cached holm oak acorns in a savanna — forest ecosystem in Central Spain, and recorded cache pilferage, type of pilferer, boar rooting, seedling emergence, seedling survival and the cause of mortality.
  • ? Cache pilferage was significantly lower in savanna (8%) than in forest (21%). However, the higher cache survival was more than offset by lower seedling emergence and, particularly, by nine times higher seedling mortality in savanna, mainly due to desiccation. Wild boar rooting did not differ between experimental caches and controls without acorns, indicating that individual cached acorns do not trigger rooting activity.
  • ? Our results indicate that the difference in post-dispersal survival between savanna and forest is due to lower emergence and, primarily, higher seedling mortality in savanna, not to higher cache pilferage. Absence of safe sites such as shrubs, abundantly present in the forest, may well explain the lack of recruitment in the savanna. Management measures appear necessary for long-term persistence of Mediterranean savannas in general.
  •   相似文献   
    83.
    Methane emissions from upland forest soils and vegetation   总被引:1,自引:0,他引:1  
    Most work on methane (CH(4)) emissions from natural ecosystems has focused on wetlands because they are hotspots of CH(4) production. Less attention has been directed toward upland ecosystems that cover far larger areas, but are assumed to be too dry to emit CH(4). Here we review CH(4) production and emissions in upland ecosystems, with attention to the influence of plant physiology on these processes in forests. Upland ecosystems are normally net sinks for atmospheric CH(4) because rates of CH(4) consumption exceed CH(4) production. Production of CH(4) in upland soils occurs in microsites and may be common in upland forest soils. Some forests switch from being CH(4) sinks to CH(4) sources depending on soil water content. Plant physiology influences CH(4) cycling by modifying the availability of electron donors and acceptors in forest soils. Plants are the ultimate source of organic carbon (electron donor) that microbes process into CH(4). The availability of O(2) (electron acceptor) is sensitive to changes in soil water content, and therefore, to transpiration rates. Recently, abiotic production of CH(4) from aerobic plant tissue was proposed, but has not yet been verified with independent data. If confirmed, this new source is likely to be a minor term in the global CH(4) budget, but important to quantify for purposes of greenhouse gas accounting. A variety of observations suggest that our understanding of CH(4) sources in upland systems is incomplete, particularly in tropical forests which are stronger sources then expected.  相似文献   
    84.
    The effect of pruning all branches (complete pruning) or retaining one branch (partial pruning) on the dynamics of nitrogen cycling in aboveground biomass, nitrogen supplying power of an amended Eutric Cambisol, and fine root length, was studied in an Erythrina poeppigiana (Walp.) O.F. Cook—tomato (Lycopersicon esculentum Mill.) alley cropping practice in Turrialba, Costa Rica during 1999–2000. Over the 1 year pruning cycle, in which trees were completely or partially pruned four times, respective aboveground biomass production was 4.4 Mg or 7 Mg ha−1 (2-year-old trees) and 5.5 Mg or 9 Mg ha−1 (8-year-old trees); N cycled in aboveground biomass was 123 kg or 187 kg ha−1 (2-year-old trees) and 160 kg or 256 kg N ha−1 (8-year-old trees); mean fine root length was 489 or 821 m (2-year-old-trees), 184 or 364 m per tree (8-year-old-trees). Pruning intensity did not significantly affect net N mineralisation and net nitrification rates during the tomato-cropping season. For the tomato crop, pre-plant mean net N mineralisation rate of 2.5 mg N kg−1 soil day−1 was significantly lower than 16.7 or 11.6 mg N kg−1 soil day−1 at the end of vegetative development and flowering, respectively. Mean net nitrification rates of 3.5, and 4.3 mg N kg−1 soil day−1, at pre-plant and end of vegetative development, respectively, were significantly higher than 0.3 mg N kg−1 soil day−1 at end of flowering. In humid tropical low-input agroforestry practices that depend on organic inputs from trees for crop nutrition, retention of a branch on the pruned tree stump appears to be a good alternative to removal of all branches for reducing N losses through higher N cycling in aboveground biomass, and for conserving fine root length for higher N uptake, although it might enhance competition for associated crops.  相似文献   
    85.
    Initial growing space is of critical importance to growth and quality development of individual trees. We investigated how mortality, growth (diameter at breast height, total height), natural pruning (height to first dead and first live branch and branchiness) and stem and crown form of 24-year-old pedunculate oak (Quercus robur [L.]) and European ash (Fraxinus excelsior [L.]) were affected by initial spacing. Data were recorded from two replicate single-species Nelder wheels located in southern Germany with eight initial stocking regimes varying from 1,020 to 30,780 seedlings·ha -1 . Mortality substantially decreased with increasing initial growing space but significantly differed among the two species, averaging 59% and 15% for oak and ash plots, respectively. In contrast to oak, the low self-thinning rate found in the ash plots over the investigated study period resulted in a high number of smaller intermediate or suppressed trees, eventually retarding individual tree as well as overall stand development. As a result, oak gained greater stem dimensions throughout all initial spacing regimes and the average height of ash significantly increased with initial growing space. The survival of lower crown class ashes also appeared to accelerate self-pruning dynamics. In comparison to oak, we observed less dead and live primary branches as well as a smaller number of epicormic shoots along the first 6m of the lower stemof dominant and co-dominant ashes in all spacing regimes. Whereas stem form of both species was hardly affected by initial growing space, the percentage of brushy crowns significantly increased with initial spacing in oak and ash. Our findings suggest that initial stockings of ca. 12,000 seedlings per hectare in oak and 2,500 seedlings per hectare in ash will guarantee a sufficient number of at least 300 potential crop trees per hectare in pure oak and ash plantations at the end of the self-thinning phase, respectively. If the problem of epicormic shoots and inadequate self-pruning can be controlled with trainer species, the initial stocking may be reduced significantly in oak.  相似文献   
    86.
    87.
    In Cameroon, cocoa trees are mostly grown in forests and without fertilization. Our aim was to learn more about the temporal dynamics of soils in cocoa agroforests by comparing young (1–4 years old) and old (over 25 years old) cocoa agroforests. Short fallow and secondary forest were used as treeless and forest references. The numbers and diversities of soil vesicular arbuscular mycorrhizal (VAM) fungi on 60 cocoa producing farms in the Central province of Cameroon were assessed based on the classical morphotyping of spore morphology. We also observed the soil organic matter, nitrogen and major soil nutrients. VAM spore density was significantly lower in the young cocoa agroforests (16 spores g−1 dry soil) than in the old cocoa agroforests (36 spores g−1 dry soil). Levels in the nearby secondary forest (46 spores g−1 dry soil) were not significantly different from old cocoa. The spore density was significantly highest in the short fallow (98 spores g−1 dry soil). The Shannon–Weaver index also showed significantly lower biodiversity in young cocoa (0.39) than in old cocoa agroforests (0.48), secondary forest (0.49) and short fallow (0.47). These observations were supported by significant differences in the C:N ratio, Ca, Mg, and cation exchange capacity between young and old cocoa agroforests. We concluded that unfertilized cocoa agroforests could be sustainable, despite a decrease in some soil characteristics at a young stage, due to traditional land-conversion practices based on selective clearing and burning of secondary forest.  相似文献   
    88.
    尚德库 《林业研究》1997,8(1):54-58
    lNTRoDUCTIONTheon-sitcnon-dcstructit'cmcasurcl11cntofu.oodmoisbocontcntattTactsgrcatintcrcsts.Itpla3'simpor-tantpartsinthescicntificrcscarchsucl1asonthchcatandmasstransportproccssesint"ooddri'ing.thcim-pregnationofliquidinxt'ood.thcmoisturccontcntdistri-b…  相似文献   
    89.
    We describe the proteomic identification of two pathogenesis-related group 5 (PR-5) proteins, an acidic thaumatin-like protein (TLP) and a basic TLP isolated from the pollination drop of hybrid yew (Taxus x media Rehder). The basic TLP (TxmTLPb) was the most abundant protein in the yew pollination drop based on protein spot size after two-dimensional electrophoresis. The acidic TLP (TxmTLPa) is also a major protein component of the yew ovular secretion and appears to be encoded by a number of mRNAs transcribed from a TLP gene family that has undergone limited sequence divergence. We have sequenced five acidic TLP-encoding cDNAs (TxmTLPa-1,2,3,4 and 5) isolated from the yew ovule that vary from each other by no more than five out of 233 amino acid residues in their predicted protein sequences. All of the cDNA variants encode TLPs possessing the 16 conserved cysteine residues and five charged amino acid side chains associated with antifungal activity. Amplification of genomic DNA with TxmTLPa primers indicated that at least 11 acidic TLPs with highly similar amino acid sequences may be expressed in yew tissues. Antibodies against TLPs confirmed the identity of TxmTLPa and TxmTLPb in the yew pollination drop and detected TLPs in the ovular secretions of four other species from three other conifer families. Our results suggest that TLPs are a conserved component of conifer ovular secretions and are involved in broad spectrum pathogen defence of ovules.  相似文献   
    90.

    Key message

    Comparisons between compression and opposite wood formation in prostrating Pinus mugo indicate that the secondary meristem can produce more tracheids with thicker walls by also increasing the number of contemporaneously differentiating cells, rather than only increasing the duration or the rate of cell formation.

    Context

    Although cambium tissues within a stem experience the same climatic conditions, the resulting wood structure and properties can strongly differ. Assessing how meristem differently regulates wood formation to achieve different anatomical properties can help understanding the mechanisms of response and their plasticity.

    Aims

    We monitored the formation of compression (CW) and opposite (OW) wood within the same stems to understand whether achieved differences in wood structure are caused by modifications in the process of cell formation.

    Methods

    We collected weekly microcores of compression and opposite wood from the curved stem of ten treeline prostrating mountain pines (Pinus mugo Turra ssp. mugo) at the Majella massif in Central Italy.

    Results

    Results indicate that cambium formed approximately 1.5 times more cells in CW than OW, despite that CW cell differentiation only extended 2 weeks longer and the residence time of CW cells in the wall-thickening phase was only 20% longer. Differences in their formation were thus mainly related to both the rates and the width of the enlarging and wall-thickening zones (i.e., the number of cells simultaneously under differentiation) and less to duration of cell formation.

    Conclusion

    We conclude that to achieve such a different wood structures, the efficiency of the secondary meristem, in addition of altered rate of cell division and differentiation, can also modify the width of the developing zones. Thus, deciphering what rules this width is important to link environmental conditions with productivity.
      相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号