全文获取类型
收费全文 | 543篇 |
免费 | 11篇 |
专业分类
林业 | 67篇 |
农学 | 10篇 |
基础科学 | 4篇 |
219篇 | |
综合类 | 91篇 |
农作物 | 21篇 |
水产渔业 | 15篇 |
畜牧兽医 | 90篇 |
园艺 | 12篇 |
植物保护 | 25篇 |
出版年
2024年 | 1篇 |
2023年 | 5篇 |
2022年 | 7篇 |
2021年 | 14篇 |
2020年 | 7篇 |
2019年 | 12篇 |
2018年 | 27篇 |
2017年 | 12篇 |
2016年 | 12篇 |
2015年 | 17篇 |
2014年 | 14篇 |
2013年 | 25篇 |
2012年 | 43篇 |
2011年 | 37篇 |
2010年 | 26篇 |
2009年 | 19篇 |
2008年 | 43篇 |
2007年 | 26篇 |
2006年 | 30篇 |
2005年 | 30篇 |
2004年 | 25篇 |
2003年 | 24篇 |
2002年 | 31篇 |
2001年 | 10篇 |
2000年 | 4篇 |
1999年 | 4篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1991年 | 6篇 |
1990年 | 2篇 |
1989年 | 2篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1984年 | 2篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1978年 | 3篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 2篇 |
1973年 | 2篇 |
1972年 | 1篇 |
1971年 | 3篇 |
1966年 | 1篇 |
1960年 | 1篇 |
排序方式: 共有554条查询结果,搜索用时 15 毫秒
61.
Preston C Richling E Elss S Appel M Heckel F Hartlieb A Schreier P 《Journal of agricultural and food chemistry》2003,51(27):8027-8031
By use of extracts prepared by liquid-liquid separation of the volatiles from self-prepared juices of pineapple fruits (Ananas comosus) (n = 14) as well as commercial pineapple recovery aromas/water phases (n = 3), on-line capillary gas chromatography-isotope ratio mass spectrometry was employed in the combustion (C) and the pyrolysis (P) modes (HRGC-C/P-IRMS) to determine the delta(13)C(VPDB) and delta(2)H(VSMOW) values of selected pineapple flavor constituents. In addition to methyl 2-methylbutanoate 1, ethyl 2-methylbutanoate 2, methyl hexanoate 3, ethyl hexanoate 4, and 2,5-dimethyl-4-methoxy-3[2H]-furanone 5, each originating from the fruit, the delta(13)C(VPDB) and delta(2)H(VSMOW) data of commercial synthetic 1-5 and "natural" (biotechnologically derived) 1-4 were determined. With delta(13)C(VPDB) data of pineapple volatiles 1-4 varying from -12.8 to -24.4 per thousand, the range expected for CAM metabolism was observed. Compound 5 showed higher depletion from -20.9 to -28.6 per thousand. A similar situation was given for the delta(2)H(VSMOW) values of 3-5 from pineapple ranging from -118 to -191 per thousand, whereas 1 and 2 showed higher depleted values from -184 to -263 per thousand. In nearly all cases, analytical differentiation of 1-5 from pineapple and natural as well as synthetic origin was possible. In general, natural and synthetic 1-5 exhibited delta(13)C(VPDB) data ranging from -11.8 to -32.2 per thousand and -22.7 to -35.9 per thousand, respectively. Their delta(2)H(VSMOW) data were in the range from -242 to -323 per thousand and -49 to -163 per thousand, respectively. 相似文献
62.
Mercury in the Swedish environment — Recent research on causes,consequences and corrective methods 总被引:3,自引:0,他引:3
Oliver Lindqvist Kjell Johansson Lage Bringmark Birgitta Timm Mats Aastrup Arne Andersson Gunnar Hovsenius Lars Håkanson Åke Iverfeldt Markus Meili 《Water, air, and soil pollution》1991,55(1-2):xi-261
During the last decade a new pattern of Hg pollution has been discerned, mostly in Scandinavia and North America. Fish from low productive lakes, even in remote areas, have been found to have a high Hg content. This pollution problem cannot be connected to single Hg discharges but is due to more widespread air pollution and long-range transport of pollutants. A large number of waters are affected and the problem is of a regional character. The national limits for Hg in fish are exceeded in a large number of lakes. In Sweden alone, it has been estimated that the total number of lakes exceeding the blacklisting limit of 1 mg Hg kg-1 in 1-kg pike is about 10 000. The content of Hg in fish has markedly increased in a large part of Sweden, exceeding the estimate background level by about a factor of 2 to 6. Only in the northernmost part of the country is the content in fish close to natural values. There is, however, a large variation of Hg content in fish within the same region, which is basically due to natural conditions such as the geological and hydrological properties of the drainage area. Higher concentrations in fish are mostly found in smaller lakes and in waters with a higher content of humic matter. Since only a small percentage of the total flow of Hg through a lake basin is transferred into the biological system, the bioavailability and the accumulation pattern of Hg in the food web is of importance for the Hg concentrations in top predators like pike. Especially, the transfer of Hg to low trophic levels seems to be a very important factor in determining the concentration in the food web. The fluxes of biomass through the fish community appear to be dominated by fluxes in the pelagic food web. The Hg in the lake water is therefore probably more important as a secondary source of Hg in pike than is the sediment via the benthic food chain. Different remedy actions to reduce Hg in fish have been tested. Improvements have been obtained by measures designed to reduce the transport of Hg to the lakes from the catchment area, eg. wetland liming and drainage area liming, to reduce the Hg flow via the pelagic nutrient chains, eg. intensive fishing, and to reduce the biologically available proportion of the total lake dose of Hg, eg. lake liming with different types of lime and additions of selenium. The length of time necessary before the remedy gives result is a central question, due to the long half-time of Hg in pike. In general it has been possible to reduce the Hg content in perch by 20 to 30% two years after treatments like lake liming, wetland liming, drainage area liming and intensive fishing. Selenium treatment is also effective, but before this method can be recommended, dosing problems and questions concerning the effects of selenium on other species must be evaluated. Regardless how essential these kind of remedial measures may be in a short-term perspective, the only satisfactory long-term alternative is to minimize the Hg contamination in air, soil and water. Internationally, the major sources of Hg emissions to the atmosphere are chlor-alkali factories, waste incineration plants, coal and peat combustion units and metal smelter industries. In the combustion processes without flue gas cleaning systems, probably about 20 to 60% of the Hg is emitted in divalent forms. In Sweden, large amounts of Hg were emitted to the atmosphere during the 50s and 60s, mainly from chlor-alkali plants and from metal production. In those years, the discharges from point sources were about 20 to 30 t yr 1. Since the end of the 60s, the emission of Hg has been reduced dramatically due to better emission control legislation, improved technology, and reduction of polluting industrial production. At present, the annual emissions of Hg to air are about 3.5 t from point sources in Sweden. In air, more than 95% of Hg is present as the elemental Hg form, HgO0. The remaining non-elemental (oxidized) form is partly associated to particles with a high wash-out ratio, and therefore more easily deposited to soils and surface waters by precipitation. The total Hg concentration in air is normally in the range 1 to 4 ng m-3. In oceanic regions in the southern hemisphere, the concentration is generally about 1 ng m?3, while the corresponding figure for the northern hemisphere is about 2 ng m-3. In remote continental regions, the concentrations are mainly about 2 to 4 ng m?3. In precipitation, Hg concentrations are generally found in the range 1 to 100 ng L?1. In the Nordic countries, yearly mean values in rural areas are about 20 to 40 ng L?1 in the southern and central parts, and about 10 ng L?1 in the northern part. Accordingly, wet deposition is about 20 (10 to 35) g km?2 yr?1 in southern Scandinavia and 5 (2 to 7) in the northern part. Calculations of Hg deposition based on forest moss mapping techniques give similar values. The general pattern of atmospheric deposition of Hg with decreasing values from the southwest part of the country towards the north, strongly suggests that the deposition over Sweden is dominated by sources in other European countries. This conclusion is supported by analyses of air parcel back trajectories and findings of significant covariations between Hg and other long range transported pollutants in the precipitation. Apart from the long range transport of anthropogenic Hg, the deposition over Sweden may also be affected by an oxidation of elemental Hg in the atmosphere. Atmospheric Hg deposited on podzolic soils, the most common type of forest soil in Sweden, is effectively bound in the humus-rich upper parts of the forest soil. In the Tiveden area in southern Sweden, about 75 to 80% of the yearly deposition is retained in the humus layer, chemically bound to S or Se atoms in the humic structure. The amount of Hg found in the B horizon of the soils is probably only slightly influenced by anthropogenic emissions. In the deeper layers of the soil, hardly any accumulation of Hg takes place. The dominating horizontal flow in the soils takes place in the uppermost soil layers (0 to 20 cm) during periods of high precipitation and high groun water level in the soils. The yearly transport of Hg within the soils has been calculated to be about 5 to 6 g km?2. The specific transport of total Hg from the soil system to running waters and lakes in Sweden is about 1 to 6 g km?2 yr1. The transport of Hg is closely related to the transport of humic matter in the water. The main factors influencing the Hg content and the transport of Hg in run-off waters from soils are therefore the Hg content in soils, the transport of humic matter from the soils and the humus content of the water. Other factors, for example acidification of soils and waters, are of secondary importance. Large peatlands and major lake basins in the catchment area reduce the out-transport of Hg from such areas. About 25 to 75% of the total load of Hg of lakes in southern and central Sweden originates from run-off from the catchment area. In lakes where the total load is high, the transport from run-off is the dominating pathway. The total Hg concentrations in soil solution are usually in the range 1 to 50, in ground water 0.5 to 15 and in run-off and lake water 2 to 12 ng L?1, respectively. The variation is largely due to differences in the humus content of the waters. In deep ground water with a low content of humic substances, the Hg concentration is usually below 1 ng L?1. The present amount and concentrations of Hg in the mor layer of forest soils are affected by the total anthropogenic emissions of Hg to the atmosphere, mainly during this century. Especially in the southern part of Sweden and in the central part along the Bothnian coast, the concentrations in the mor layer are markedly high. In southern areas the anthropogenic part of the total Hg content is about 70 to 90%. Here, the increased content in these soils is mainly caused by long-range transport and emissions from other European countries, while high level areas in the central parts are markedly affected by local historical emissions, mainly from the chlor-alkali industry. When comparing the input/output fluxes to watersheds it is evident that the present atmospheric deposition is much higher than the output via run-off waters, on average about 3 to 10 times higher, with the highest ration in the southern parts of Sweden. Obviously, Hg is accumulating in forest soils in Sweden at the present atmospheric deposition rate and, accordingly, the concentrations in forest soils are still increasing despite the fact that the emissions of Hg have drastically been reduced in Sweden during the last decades. The increased content of Hg in forest soils may have an effect on the organisms and the biological processes in the soils. Hg is by far the most toxic metal to microorganisms. In some regions in Sweden, the content of Hg in soils is already today at a level that has been proposed as a critical concentration. To obtain a general decrease in the Hg content in fish and in forest soils, the atmospheric deposition of Hg has to be reduced. The critical atmospheric load of Hg can be defined as the load where the input to the forest soils is less than the output and, consequently, where the Hg content in the top soil layers and the transport of Hg to the surface waters start to decrease. A reduction by about 80% of the present atmospheric wet deposition has to be obtained to reach the critical load for Scandinavia. 相似文献
63.
Martin Wiesmeier Olivia Kreyling Markus Steffens Philipp Schoenbach Hongwei Wan Martin Gierus Friedhelm Taube Angelika Kölbl Ingrid Kögel‐Knabner 《植物养料与土壤学杂志》2012,175(3):434-442
The assessment of grassland degradation due to overgrazing is a global challenge in semiarid environments. In particular, investigations of beginning steppe degradation after a change or intensification of the land use are needed in order to detect and adjust detrimental land‐use management rapidly and thus prevent severe damages in these sensitive ecosystems. A controlled‐grazing experiment was established in Inner Mongolia (China) in 2005 that included ungrazed (UG) and heavily grazed plots with grazing intensities of 4.5 (HG4.5) and 7.5 (HG7.5) sheep per hectare. Several soil and vegetation parameters were investigated at all sites before the start of the experiment. Topsoil samples were analyzed for soil organic C (SOC), total N (Ntot), total S (Stot), and bulk density (BD). As vegetation parameters, aboveground net primary productivity (ANPP), tiller density (TD), and leaf‐area index (LAI) were determined. After 3 y of the grazing experiment, BD increased and SOC, Ntot, Stot, ANPP, and LAI significantly decreased with increasing grazing intensity. These sensitive parameters can be regarded as early‐warning indicators for degradation of semiarid grasslands. Vegetation parameters were, however, more sensitive not only to grazing but also to temporal variation of precipitation between 2006 and 2008. Contrary, soil parameters were primarily affected by grazing and resistant against climatic variations. The assessment of starting conditions in the study area and the application of defined grazing intensities is essential for the investigation of short‐term degradation in semiarid environments. 相似文献
64.
65.
We tested whether a ‘Lockerbraunerde’ from the heights of the Zittauer Gebirge in Eastern Saxony exhibited andic properties and classified it according to the rules of the World Reference Base for Soil Resources (WRB, 1998). To achieve this, we characterized a selected soil by means of routine soil analysis; selective dissolution procedures; X‐ray diffraction (XRD); X‐ray fluorescence (XRF), and Transmission Electron Microscopy (TEM). We used field criteria (Thixotropy; NaF‐field test) to obtain a map of the spatial distribution of soils with potential andic properties. We found that the soil fulfilled all requirements to be classified as an Andosol. The composition of the colloidal phases was exactly intermediate between sil‐andic and alu‐andic. At the same time, the soil had a spodic horizon [determined through the depth function of the Alo+½Feo criterion]. As there was no indication of vertical translocation of metal‐organic complexes, but sufficient evidence to suggest the downward movement of mobile Al/Si‐phases, we maintain to classify the soil as an Endoskeleti‐Umbric Andosol and propose the existence of a pedogenetic pathway intermediate between Podsolisation and Andosolization. We conclude that the spodic horizon in the WRB is not well defined because of the dominance of the Alo+½Feo criterion over morphological evidence. We further suggest the German soil taxonomy to be modified to better represent soils containing short range order minerals. 相似文献
66.
Vito Armando Laudicina Agata Novara Vito Barbera Markus Egli Luigi Badalucco 《Land Degradation \u0026amp; Development》2015,26(1):45-53
Several studies have reported how tillage and cropping systems affect quantity, quality, and distribution of soil organic matter (SOM) along the profile. However, the effect of soil management on the chemical structure of SOM and on its hydrophobic and hydrophilic components has been little investigated. In this work, the long‐term (19 years) effects of two cropping systems (wheat monoculture and wheat/faba bean rotation) and three tillage managements (conventional, reduced, and no tillage) on some chemical characteristics of SOM and their relationships with labile carbon (C) pools were evaluated. Soil samples were taken from the topsoil (0–15 cm) of a Chromic Haploxerert (central Sicily, Italy). After 19 years of different tillage and cropping systems management, total organic C significantly differed among treatments with the labile organic C pools showing the greater amount in no till and in wheat/faba bean plots. Hydrophobic and hydrophilic components of SOM, determined by diffuse reflectance infrared Fourier transform spectroscopy, were mainly affected by cropping system, whereas aromatic components of SOM by tillage. Soil organic matter components and characteristics showed significant correlations with the soil biochemical parameters, confirming the expected synergism between chemical and biochemical properties. This study demonstrated that (i) no tillage and crop rotation improve the chemical and biochemical properties of SOM of Vertisols under semiarid environment; and (ii) tillage management and cropping systems have affected, after 19 years, more the chemical and biochemical properties of SOM than its quantity. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
67.
Reconciling 14C and minirhizotron‐based estimates of fine‐root turnover with survival functions 下载免费PDF全文
The turnover of fine‐roots is a crucial component for the input of C to the soil. The amount of root litter input is depending on estimates of turnover times from different techniques. Turnover times from fine‐root cameras (minirhizotrons) often yield 75% higher root litter input estimates than turnover times estimated with the bomb‐radiocarbon signature of fine roots. We introduce a generic framework for the analysis of fine‐root 14C with different survival functions. So far, mostly an exponential function has been used to estimate the turnover time and mean age of fine roots. In the context of the introduced survival function framework we clarify the terms turnover time, mean residence time, mean longevity, and mean age, which are commonly used in studies of root turnover. Using a unique time series of fine‐root 14C (Fröberg 2012), we test if survival functions other than the exponential function are better in accordance with turnover‐time estimates commonly found with other methods. A survival function that corresponds to a two‐pool model was best in agreement with minirhizotron‐based estimates (mean residence time of 1.9 y). We argue that using fine‐root 14C and minirhizotron time‐to‐death data together would give the best constraints on fine‐root turnover. At the same time this could allow quantifying systematic biases inherent to both techniques. 相似文献
68.
Catrina Cofalla Sebastian Hudjetz Sebastian Roger Markus Brinkmann Roy Frings Jan W?lz Burkhard Schmidt Andreas Sch?ffer Ulrike Kammann Markus Hecker Henner Hollert Holger Schüttrumpf 《Journal of Soils and Sediments》2012,12(3):429-442
Purpose
Flood events are expected to increase both in intensity and frequency due to climate change in the near future. From an environmental toxicology perspective, there is concern that such flood events could lead to the remobilization of contaminated sediment layers in rivers. The aim of this pilot study was to establish a novel and interdisciplinary framework combining methods of hydrodynamic engineering and ecotoxicological assessment to enable investigation of the potential risks associated with such remobilization events.Materials and methods
Formulated sediment was prepared according to OECD guideline 218 and spiked with a mixture of four polycyclic aromatic hydrocarbons (phenanthrene, chrysene, pyrene, benzo[a]pyrene) at concentrations of 3.3?C8.3?mg?kg?1 dry weight. Rainbow trout (Oncorhynchus mykiss) were exposed as test animals to re-suspended sediments in three out of five experiments. The experiments were carried out in an annular flume designed to investigate transport behaviour of fine-grained sediments. Several physicochemical (e.g. pH) and sedimentological (e.g. turbidity) parameters were measured to characterise environmental conditions and erosion behaviour of sediments. Furthermore, exposure concentrations were measured by means of an in vitro assay (7-ethoxyresorufin-o-deethylase (EROD), RTL-W1 cell assay) and chemical analysis.Results and discussion
Preparation and spiking of large amounts of formulated sediments were feasible but not practical. Successful spiking could be confirmed by the bioanalytical methods with the spiked sediments showing significantly elevated EROD induction compared to control sediments. Conditions within the annular flume remained stable throughout all experiments and were adequate to support rainbow trout. Flood events were successfully simulated, resulting in re-suspension of formulated sediment. Different erosion behaviours of sediments during the simulated flood events were observed and could be associated with changes in microbial composition of sediments due to differences in storage conditions. Therefore, maintaining constant storage conditions of formulated sediments is crucial to enable consistency and comparability among erosion experiments.Conclusions
This study clearly demonstrated the feasibility of a combined hydro-toxicological approach in support of the investigation of the potential ecotoxicological relevance of sediment re-suspension events. However, based on the results presented here, it is recommended to include additional physicochemical parameters, such as redox potential and conductivity, and to extend the experimental setup to natural sediments and different aquatic organisms. Future studies will use natural sediments containing representative microbial communities and extracellular polymeric substances to enable extrapolation from the annular flume to conditions in natural flowing waters. 相似文献69.
Neither the phosphorus (P)‐rich soils in urban areas nor their environmental implications have been adequately studied. This study investigated soils of typical urban function zones in Nanjing/China, like park, residential areas, school yards, campus as well as suburb vegetable land and garbage filling sites, and meantime ground water in situ. Typical soils were also experimentally leached for P leaching evaluation. All studied soils were enriched with P with enrichment ratios varying from 2 to 10 for total P and 5 to 22 for NaHCO3‐extractable P, as compared with the original parent soils. The C : P ratios also indicated strong enrichment of P in urban soils. In urban areas the maximum P layer appeared as buried under different depth while in suburban soils as epipedon. The various morphology of P distribution suggested different soil formation patterns, which were related to the land use history. Groundwater P was significantly correlated with the maximum extractable P content of P in soil profiles and even better with the weighted average P content of the whole profile or P content of the soil layer at or close to groundwater table. Dissolved P in experimental leachate was comparable with that of groundwater but higher than environmentally acceptable level. Furthermore, there was a significant correlation between solution P and different extractable P forms of the studied soils. Simple P tests can provide an evaluation of the potential risk of urban soils in discharging P to water system. 相似文献
70.
Wolfgang Wilcke Kai Uwe Totsche Markus Krber Jozef Kobza Wolfgang Zech 《植物养料与土壤学杂志》2000,163(5):503-508
Depositions originating from a central Slovak Al smelter may increase metal solubility in adjacent soils because they contain F (mainly HF). The reason for fluoro‐mobilization of metals may be the formation of soluble fluoro‐metal complexes or the mobilization of organic matter and subsequent formation of organo‐metal complexes. The objectives of our work were (1) to assess the extent of metal mobilization by fluoride in a Slovak Lithic Eutrochrept affected by the emissions of an Al smelter and (2) to model the dissolved metal species with the help of a chemical equilibrium model (MINEQL+). The O (Moder), A, and B horizons were equilibrated with solutions at F concentrations of 0, 0.9, 2.7, and 9.0 mmol l—1. In the extracts, the concentrations of Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Zn, dissolved organic carbon (DOC), free and complexed F, and the pH and electrical conductivity (EC) were determined. The heavy metal concentrations in the O horizon (Cd: 0.99, Cr: 18.0, Cu: 44, Ni: 26, Pb: 110, and Zn: 84 mg kg—1) were 2.5 to 9 times larger than those in the A and B horizons. The concentrations of H2O‐soluble F decreased from the O (261 mg kg—1) to the A (103 mg kg—1) and B horizon (92 mg kg—1). In batch experiments increasing addition of F increased the equilibrium concentrations of Al, Cr, Cu, Fe, Ni, Pb, and DOC in all samples, of Cd in the A, and of K in the B horizon. At the same time the concentrations of complexed F and pH increased whereas EC decreased. Chemical equilibrium modelling indicated that the mobilizing effect of F resulted from the formation of fluoro‐Al complexes and organo‐complexes of all other metals. 相似文献